Аккреционный диск вокруг черной дыры. FAQ по Гаргантюа: реальна ли черная дыра в Интерстеллар? Биография Николая Шакуры

Звезды любого размера — от красных карликов до голубых сверхгигантов — имеют примерно сферическую форму.

Аккреционный диск Аккреционный диск – это структура, которая образуется из вещества, вращающегося вокруг центрального тела – молодой звезды или протозвезды, белого карлика, нейтронной звезды или черной дыры. Вещество диска под действием гравитации по спирали падает на центральную звезду, при этом происходит разогрев вещества, что порождает электромагнитное излучение, длина волны которого зависит от типа звезды. Диски вокруг молодых звезд и протозвезд излучают в длинноволновом (инфракрасном) диапазоне, а вокруг компактных массивных объектов типа нейтронных звезд и черных дыр – в коротковолновом (рентгеновском).

Алексей Левин

И все же в космосе есть великое множество объектов, которые вполне соответствуют столь экстравагантному титулу. Их научное название — аккреционные диски. Звезды, подобно людям, предпочитают объединяться в пары — так называемые бинарные системы. Это столь частое явление, что классик американской астрономии Цецилия Пейн-Гапочкин, которая первой доказала, что вещество Вселенной в основном состоит из водорода, как-то пошутила, что три из двух выбранных наудачу звезд входят в состав какой-нибудь бинарной системы.

Сбежать к соседу

Для определенности сначала остановимся на бинарных системах, состоящих из нормальных (то есть сжигающих водород) звезд главной последовательности, обращающихся вокруг единого центра инерции. Каков типичный механизм переноса вещества внутри достаточно тесной звездной пары? Как правило, обе звезды порождены одним и тем же молекулярным облаком и потому имеют одинаковый состав, но различные начальные массы. Более тяжелая звезда первой сжигает запасы водорода, теряет стабильность, многократно увеличивается в размере и превращается в красный гигант. При этом она может не только заполнить свою полость Роша, но и выйти за ее пределы. В таком случае центр звезды уже не сможет удержать своим тяготением вещество раздувшейся оболочки, и звезда начнет терять вещество. Значительная часть этого газа пройдет сквозь горловину на стыке полостей Роша и попадет в гравитационный плен к звезде-компаньонке. Из-за исхудания звезды-донора ее полость Роша будет стягиваться, из-за чего скорость утечки вещества со временем увеличится. Даже когда сравняются массы звезд, утечка только замедлится, но не прекратится вовсе.


Аккреционный диск — это структура, которая образуется из вещества, вращающегося вокруг центрального тела — молодой звезды или протозвезды, белого карлика, нейтронной звезды или черной дыры. Вещество диска под действием гравитации по спирали падает на центральную звезду, при этом происходит разогрев вещества, что порождает электромагнитное излучение, длина волны которого зависит от типа звезды. Диски вокруг молодых звезд и протозвезд излучают в длинноволновом (инфракрасном) диапазоне, а вокруг компактных массивных объектов типа нейтронных звезд и черных дыр — в коротковолновом (рентгеновском).

Перенос вещества знаменует начало сложной эволюции звездной пары. Вторая (менее массивная) звезда захватывает материю соседки и увеличивает свой угловой момент. Чтобы сохранить суммарный момент бинарной системы, звезды сближаются. Позже, когда первая звезда становится легче компаньонки, они начинают расходиться — опять же в силу сохранения общего углового момента. Однако если вторая звезда успеет выйти за границы своей полости Роша, она тоже окажется обречена на потерю плазмы.

Эти превращения чреваты различными исходами, и астрономы пока не умеют их точно моделировать. Однако не подлежит сомнению, что часть выброшенной материи выходит на орбиты, целиком окружающие звездную пару. Чаще всего эта материя образует плоское вращающееся кольцо, которое называется диском экскреции (от лат. excretio — «выделение»). В особых обстоятельствах звездная пара может даже утонуть в шарообразном газовом облаке, порожденном ушедшей в пространство плазмой. Вто же время каждая звезда имеет шансы обзавестись своим собственным колечком поменьше и поплотнее — аккреционным диском (accretio, «прирост»). Возможны и более экзотические сценарии (такие как столкновение и слияние звезд или же съедение соседки более крупной звездой), но в такие дебри мы не станем даже заглядывать.


Полости Роша разграничивают области гравитационного влияния каждого из компаньонов в двойной звездной системе. Все, что находится внутри соответ-ствующей полости, может обращаться только вокруг «своей» звезды. Перетекать из одной полости в другую вещество может только через «горловину», соединяющую полости.

До сих пор речь шла о нормальных звездных парах, но для запуска аккреции вполне достаточно, чтобы всего один партнер обладал газовой оболочкой, способной раздуваться и уходить сквозь горловину полости Роша. Поэтому аккреция возникает, и когда бинарная система объединяет обычную звезду с телом из вырожденной материи, то есть белым карликом, или нейтронной звездой, или даже с черной дырой (исторически аккреционные диски впервые обнаружили при наблюдении белых карликов, имеющих в компаньонах обычные звезды). Более того, именно такие аккреционные процессы имеют наиболее эффектные последствия. Хорошие примеры — взрыв сверхновой типа Iа, обусловленный длительной аккрецией на поверхность белого карлика, почти достигшего верхнего предела своей массы, а также возникновение рентгеновского пульсара, вызванное аккрецией на сильно намагниченную нейтронную звезду. Тем не менее аккреционные диски в системах обычных двойных звезд более типичны — хотя бы потому, что таких пар гораздо больше.

Центрами аккреции могут оказаться и одиночные космические объекты. Любое тело, окруженное газовой или газопылевой средой, притягивает ее частицы, и они могут либо на его поверхность, либо формировать аккреционный диск (что с успехом делают молодые звезды, недавно сформировавшиеся из газопылевых облаков). Однако все же наиболее интересные феномены наблюдаются в аккреционных дисках, возникших в тесных бинарных системах.

Полости Роша

Каждая звезда окружена областью пространства, где господствует ее собственное притяжение, а не гравитация соседки. Размер этой зоны, естественно, зависит от массы звезды. Если такие области пересечь плоскостью, в которой движутся оба светила, получится нечто вроде восьмерки — две вытянутые в линию петельки с единственной общей точкой на отрезке, соединяющем звездные центры (для большей наглядности придется остановить время, ведь эта фигура вращается). В этой точке каждая из звезд тянет в свою сторону с одинаковой силой, и суммарный вектор гравитации оказывается равным нулю. Ее называют первой точкой Лагранжа, хотя вообще-то двумя десятками лет ранее ее выявил Леонард Эйлер.


Пространственные пузыри, о которых идет речь, математически описал Эдуард Рош, французский астроном и математик XIX века, и в его честь их именуют полостями Роша. Космические частицы внутри полости Роша могут вращаться лишь вокруг той звезды, которую эта полость охватывает. Эта же теория утверждает, что вещество может перетекать между звездами сквозь горловину, соединяющую полости, то есть через окрестности первой точки Лагранжа. Материя, которая находится вне полостей, может стабильно обращаться вокруг звездной пары в целом, но ее траектории не ограничиваются путями, охватывающими одну-единственную звезду.

Вся сила в трении

Природа, как известно, сложнее всякой теории. Потерянная звездой-донором материя может мигрировать не только сквозь узкое сопло на стыке полостей Роша, но и более сложным путем, однако в любом случае не покидает орбитальной плоскости бинарной системы. Аккреционные диски возникают тем легче, чем меньше расстояние между космическими компаньонами и геометрический размер тела, к которому движутся плазменные потоки. Это легко понять — члены пары вращаются друг вокруг друга, и у частиц больше шансов не упасть на малую цель, а выйти на охватывающую ее орбиту. Поэтому аккреция на белые карлики, нейтронные звезды и черные дыры- самый эффективный механизм дискообразования. Дело это не быстрое, годовая скорость транспорта вещества от звезды-донора не превышает миллиардной доли солнечной массы. Сначала «принимающее» тело обзаводится свитой в виде узкого кольца, а диск формируется позднее.

Частицы внутри него имеют разные скорости, которые, в соответствии с третьим законом Кеплера, возрастают по мере приближения к центральному телу (именно поэтому Меркурий обращается вокруг Солнца быстрее, нежели Земля). В результате в веществе диска возникает внутреннее трение, которое гасит кинетическую энергию частиц и заставляет их двигаться по спиральным траекториям. Некоторые частицы в конце концов падают на поверхность притягивающего объекта, будь то атмосфера обычной звезды, твердая корка звезды нейтронной или горизонт событий черной дыры. Так что диск непрерывно теряет вещество, но в то же время непрерывно получает новое от звезды-донора.


Используя инструмент Large area Telescope (LAT) космической гамма-обсерватории Fermi, астрономам в 2009 году впервые удалось доказать, что микроквазары могут испускать гамма-излучение высоких энергий, причем за счет не аккреции, а более сложного механизма. Более крупная звезда в двойной системе Лебедь X-3 — это звезда Вольфа-Райе с температурой поверхности более 100 000 К. Она и второй компаньон (нейтронная звезда или черная дыра) с аккреционным диском обращаются вокруг общего центра масс с периодом около пяти часов. Максимум интенсивности гамма-излучения наблюдается, когда релятивистский компаньон находится с дальней (относительно Земли) стороны крупной звезды, — это означает, что гамма-излучение возникает за счет обратного эффекта Комптона — рассеяния ультрафиолетовых фотонов звезды на горячих релятивистских электронах джетов, разогнанных магнитным полем компактного компаньона.

Это же трение нагревает вещество диска и превращает его в источник электромагнитного излучения. Диск становится светящимся объектом — фигурально говоря, плоской звездой. В максимуме температура внутренней зоны диска может составлять десятки миллионов градусов. Этого достаточно для генерации рентгеновских квантов, что и происходит в дисках вокруг нейтронных звезд и черных дыр звездной массы. Центральная зона такого диска светит ультрафиолетом, а внешняя, чья температура обычно не превышает температуры солнечной поверхности, испускает лучи видимого спектра. Как правило, диски вокруг белых карликов не нагреваются более чем до 20 000 градусов иих спектр не простирается дальше ультрафиолетовой зоны. Самые холодные аккреционные диски, окружающие протозвезды и молодые звезды, способны генерировать лишь инфракрасное излучение. Таким образом, по ширине спектра излучения плоские звезды не уступают обычным.

Идея фрикционного (обусловленного трением) нагрева диска выглядит простой и естественной, однако это всего лишь видимость. Подобный нагрев нельзя объяснить простым столкновением газовых молекул — в этом случае температуры внутри диска будут много ниже наблюдаемых в действительности. Пока его механизмы понятны лишь в общих чертах, но, как говорится, дьявол скрывается в деталях. Одна из весьма популярных ныне теорий объясняет генерацию тепла возникновением магнитно-ротационной нестабильности — турбулентных вихревых потоков, связанных магнитными полями. Так ли это, еще предстоит выяснить.


Система Лебедь X-3 представляет собой пару из горячей массивной звезды и компактного релятивистского объекта (нейтронной звезды или черной дыры), который выбрасывает джеты — релятивистские струи вещества, излучающего в радиодиапазоне. Астрономы называют такие объекты микроквазарами, поскольку по своим свойствам — излучение в очень широком диапазоне, быстрое изменение блеска и радиоизлучающие джеты — они напоминают квазары и блазары с очень массивными черными дырами в центре, но в миниатюре. На иллюстрации — фото, сделанное в гамма-диапазоне космической гамма-обсерваторией Fermi в области созвездия Лебедя. Кружком обведен Лебедь X-3, впервые обнаруженный в 1966 году как мощный источник рентгеновского излучения. Более яркие точки — это пульсары.

Живой и светится

Аккреционные диски не перестают удивлять астрономов. Профессор Техасского университета Крейг Уилер как-то отметил, что они живут своей собственной жизнью. Аккреционный диск способен изменять светимость, причем в весьма широких пределах. Это не универсальное правило — некоторые диски стабильно излучают электромагнитную энергию, а некоторые вспыхивают лишь время от времени. Как раз такое поведение характерно для дисков, окружающих компактные объекты — белые карлики, нейтронные звезды и черные дыры.

Наиболее типичная (но отнюдь не единственная) причина таких вспышек состоит в том, что интенсивность фрикционного нагрева диска в значительной мере зависит от его температуры. При нагреве не выше нескольких тысяч градусов вещество диска прозрачно для инфракрасного излучения и быстро теряет тепло. В этих условиях трение довольно слабое, частицы диска не особенно тормозятся и в большинстве остаются на стабильных орбитах, не стягивающихся к центру аккреции.

Однако температура диска определяется также его плотностью, которая связана с темпом поступления вещества от звезды-донора. Если она подпитывает диск достаточно щедро, плотность его вещества растет, диск постепенно теряет прозрачность и все лучше удерживает тепло. Поскольку он при этом нагревается, прозрачность еще сильнее уменьшается, и это опять же подхлестывает рост температуры. Вещество становится очень горячим, начинает ярко светиться, излучая все больше и больше коротковолновых фотонов. Диск вспыхивает, подобно переменной звезде, быстро увеличивая блеск до разрешенного природой максимума.


Трехмерная модель аккреции двойной звезды SS Лебедя, представителя одного из подклассов карликовых новых. Блеск SS Лебедя возрастает на 2−6 звездных величин на 1−2 дня с периодом от 10 дней до нескольких лет, механизм этих вспышек объясняется последствиями перехода вещества в диске из одного устойчивого состояния (нейтрального) в другое (ионизованное).

А затем опять вмешивается трение. Оно становится настолько большим, что тормозит молекулы во внешней части аккреционного диска. Они теряют скорость и мигрируют к центру диска, вследствие чего периферийная зона становится более разреженной и посему прозрачной для радиации. Процесс поворачивается в обратную сторону — диск теряет тепло с внешнего края, охлаждается, делается прозрачней и, соответственно, охлаждается еще сильнее. В конце концов температура всего диска снижается настолько, что он опять превращается в источник одного лишь инфракрасного излучения. Поскольку аккреция со звезды-донора не прекращается, диск начинает греться — и цикл повторяется заново.

Естественно, что такие циклы различны для разных дисков — все зависит от конкретных условий. Продолжительность холодной стадии может изменяться в широких пределах — от недель до десятков лет. В этой фазе диск практически невидим, разве что уж очень настойчиво приглядываться к нему с помощью инфракрасной аппаратуры. Длительность горячей фазы и, соответственно, высокой яркости диска в среднем в десять раз короче. Поэтому втесной двойной системе типичный аккреционный диск в каком-то смысле ведет себя подобно электрическому конденсатору, который долго копит энергию и потом быстро разряжается. Интересно, что даже если звезда-донор поставляет вещество с постоянной скоростью, диск все равно периодически мигает и гаснет. Как и сердце красавицы, он склонен если не к измене, то к перемене.

Диски и катаклизмы

Для иллюстрации богатых возможностей аккреционных дисков рассмотрим обширный класс космических объектов, объединенных общим названием «катаклизмические переменные». Это тесные бинарные системы, состоящие из звезды главной последовательности (обычно из самых легких, но порой и красного гиганта) и белого карлика. Они проявляют себя весьма нестабильным излучением (отсюда и название), которое внемалой степени обусловлено наличием аккреционного диска.

Генераторы антиматерии

Аккреционный диск совсем не обязан быть плоским. Последние теоретические исследования показали, что на стадии охлаждения плотность вещества в центре диска может упасть столь сильно, что частицы почти перестают замечать друг друга. Интенсивность электромагнитного излучения резко снижается, тепло перестает отводиться, и диск, несмотря на сильную разреженность, быстро нагревается. Давление в его центре увеличивается настолько, что образуется почти сферический пузырь, заполненный сверхгорячей плазмой. Температура этой плазмы может превысить предел, за которым возникают электронно-позитронные пары, и распухшая внутренняя зона диска становится источником антиматерии. Теоретики полагают, что подобные процессы обычно имеют место в окрестностях черных дыр, в частности, сверхмассивных. Большая часть тепловой энергии непосредственно поглощается самой дырой, остаток же излучается в виде жесткого рентгена и гамма-квантов.

Практически все катаклизмические переменные испускают свет и тепло не только из срединных и центральных зон аккреционных дисков, но и из области на стыке горловины полости Роша и внешнего края диска. Ее называют горячим пятном — и есть за что. Газовые частицы, приходящие от звезды-донора, на этом участке сталкиваются с материей аккреционного диска и сильно ее нагревают. Светимость горячего пятна может превосходить светимость внутренних зон диска, хотя размер его значительно меньше.

Известно несколько разновидностей катаклизмических переменных. К одной из них относятся классические новые звезды (или просто новые). В этих системах вещество аккреционного диска в изобилии падает на поверхность белого карлика со скоростью около тысячи километров в секунду. Более 90% этого вещества состоит из водорода и поэтому может служить топливом для термоядерных реакций. Для их запуска надо, чтобы водород разогрелся до критической температуры порядка 10 млн градусов. Поскольку эти реакции интенсивно выделяют энергию, на поверхности белого карлика возникают ударные волны, которые буквально взрывают его внешний слой и выбрасывают сверхгорячую плазму в окружающее пространство. В это время светимость системы возрастает на 3−6 порядков. По завершении вспышки белый карлик принимается копить на поверхности новый запас водорода — горючее для очередного взрыва. Согласно теории, классические новые могут загораться с интервалом в 10000 лет, но до сих пор этого еще не наблюдали (что и неудивительно — история астрономии значительно короче).


Другой вид катаклизмических переменных — повторные новые. Они увеличивают яркость гораздо скромнее, максимум в тысячу раз, зато вспыхивают каждые 10−100 лет. Механизм таких вспышек пока точно не известен. Есть еще карликовые новые, светимость которых возрастает лишь десятикратно в течение недель или месяцев. Не исключено, что это обусловлено фрикционным перегревом аккреционного диска, однако такое объяснение не вполне общепринято.

Окольцевать черную дыру

Самые большие аккреционные диски имеются у сверхмассивных черных дыр в центрах галактик. Основным источником материи для таких дисков служат горячие молодые звезды, чье излучение активно выбрасывает в пространство плазму с внешних оболочек (это явление называют звездным ветром). Как рассказал «ПМ» профессор астрономии Мичиганского университета Джон Миллер, эти диски нагреваются примерно до таких же температур, что и диски вокруг белых карликов, и поэтому в основном генерируют ультрафиолетовое излучение. Это может показаться странным, поскольку вес самих дыр составляет миллионы и миллиарды солнечных масс. Однако дело в следующем: поверхность подобного диска столь обширна, что быстро излучает тепло — по той же причине чай в блюдечке стынет много быстрее, нежели в чашке.

«За последние годы достигнут значительный прогресс в изучении потоков частиц в аккреционных дисках, окружающих черные дыры различного калибра, — говорит профессор Миллер. — Внутренние края таких дисков могут настолько приблизиться к границе черной дыры, что попадут в области, где уже работает общая теория относительности. Спектральный анализ исходящего оттуда излучения обещает немало интересного. Аккреционный диск может служить своеобразным индикатором вращения черной дыры. Теория утверждает, что внутренний край диска должен подойти к горизонту событий вращающейся дыры ближе, чем к горизонту дыры той же массы с нулевым угловым моментом. Уже есть приборы, способные обнаружить этот эффект и тем самым выявить вращение черной дыры. Вполне возможно, в ближайшем будущем это удастся».

Лауреатами Государственной премии России 2016 года стали астрофизики Рашид Сюняев и Николай Шакура.

Н.И. Шакура и Р.А. Сюняев в конференц-зале ГАИШ, 1979 год. (Фото из архива фотолаборатории ГАИШ МГУ)

Николай Иванович Шакура (фото О. С. Бартунова, ГАИШ)

Рашид Алиевич Сюняев (Фото: Artem Korzhimanov, ru.wikipedia.org)

Почетный знак лауреата Государственной премии Российской Федерации.

Награду они получили за созданную еще в начале 1970-х годов теорию дисковой аккреции вещества на черные дыры, которая стала общепринятой и легла в основу современной теории двойных систем, представляющих собой мощные источники рентгеновского излучения.

Их основополагающая статья «Стандартная теория дисковой аккреции на черные дыры и нейтронные звезды», вышедшая в 1973 году в журнале «Astronomy and Astrophysics», считается самой цитируемой статьей в мировой теоретической астрофизике.

Падение вещества на небесное тело благодаря его гравитационному притяжению получило название аккреция (от латинского «приращение»). Вещество, падающее на компактный объект с очень сильной гравитацией, чёрную дыру или нейтронную звезду, не может сразу на него упасть и образует вокруг него быстро вращающийся диск. Это явление называется дисковой аккрецией.

При этом вещество разгоняется гравитацией до скоростей, близких к скорости света. Столкновение и взаимное трение столь высокоскоростных потоков газа разогревает их до температур в десятки и сотни миллионов градусов. Это приводит к огромному излучению энергии главным образом в рентгеновском диапазоне, на которое расходуется до 0,3 от энергии покоя падающего вещества.

Светимость такого источника достигает 10 36 -10 39 эрг/с, что в тысячи и миллионы раз больше светимости Солнца. Этот механизм объясняет возникновение самых мощных источников излучения во Вселенной. Он применим для двойных систем, где один из компонентов представляет собой нейтронную звезду или черную дыру, а так же при аккреции на сверхмассивные черные дыры, что позволяет объяснить излучение квазаров и галактик.

Стоит отметить, что идею о мощном энерговыделении при несферической аккреции вещества на черную дыру еще в 1964 году высказал академик Я.Б. Зельдович, учениками которого являются оба лауреата. Зельдович указал на принципиальную возможность наблюдения черных дыр в рентгеновском диапазоне спектра.

Выход работы Р. Сюняева и Н. Шакуры совпал по времени с началом систематических наблюдений неба американской орбитальной рентгеновской обсерваторией UHURU (NASA), открывшей в 1972-1975 годах рентгеновские пульсары, рентгеновское излучение скоплений галактик и получившей карту неба в рентгеновском диапазоне с сотнями источников рентгеновского излучения.

Теория дисковой аккреции позволила понять природу большинства этих объектов как аккрецирующих нейтронных звезд и черных дыр в тесных двойных системах, где вторым компонентом была нормальная оптическая звезда. К настоящему времени число известных рентгеновских двойных систем достигает сотни тысяч.

Отечественные астрофизики под руководством Р. Сюняева детально изучали свойства подобных источников с помощью рентгеновских обсерваторий КВАНТ-1 на станции МИР (1987-2001), спутниках ГРАНАТ (1989-1999) и ИНТЕГРАЛ (с 2002) и обнаружили большое количество новых объектов.

В теоретических статьях 1970-х годов, по словам Н. Шакуры, многое было предсказано: спектры, переменность, влияние магнитных полей. Современные инструменты, более совершенные, чем существовавшие на тот момент, а также новые наблюдения подтверждают полученные несколько десятилетий назад результаты.

Одним из предсказаний были джеты - направленные потоки вещества, выбрасываемые с огромной скоростью из-за взаимодействия аккреционного диска с магнитным полем такими астрономическими объектами, как галактики, квазары, нейтронные звезды и черные дыры. Впрочем, механизмы образования джетов до сих пор не нашли полного объяснения.

В настоящее время доктор физико-математических наук Николай Иванович Шакура – заведующий отделом релятивистской астрофизики Государственного астрономического института имени П.К.Штернберга МГУ, а академик РАН Рашид Алиевич Сюняев – заведующий лабораторией теоретической астрофизики и научного сопровождения проекта «Спектр-РГ» отдела астрофизики высоких энергий Института космических исследований РАН

По материалам пресс-службы МГУ

К 100-летию со дня рождения Я.Б. Зельдовича

Как создавалась теория дисковой аккреции

ШАКУРА Н.И.,

доктор физико-математических наук ГАИШ МГУ

Стояло лето 1963 г. После выпускных экзаменов в средней школе городского поселка Паричи, что на Гомель-щине, по каким-то делам я поехал в город Бобруйск, зашел в книжный магазин и увидел там книжку «Высшая математика для начинающих» Я.Б. Зельдовича. Естественно, имя автора мне ни о чем не говорило, но содержание книги меня заинтересовало по следующей причине.

В те, теперь уже далекие, времена среднее образование по математике заканчивалось взятием пределов. Им предшествовали элементарные функции, одна из них - парабола. Нужно было найти положение минимума (парабола «рогами» вверх) или максимума (парабола «рогами» вниз). Объясняя, как это делается согласно существующим тогда методикам с использованием формулы Виетта, школьный учитель математики (а также физики и астрономии) Альфред Викторович Барановский приговаривал следующее: «А вот методами высшей математики эти минимаксы вычисляются гораздо быстрее и красивее». Специальных занятий с передовиками школьного процесса Альфред не проводил. Свое индивидуальное развитие в математике я получал, знакомясь с содержимым задач, присылаемых по почте из МГУ.

После покупки книжки я зашел в небольшой уютный скверик на улице Ба-харева и начал ее листать. На первых страницах излагались школьные понятия: функции, графики, скорость, ускорение...

Больше я в книжку Я.Б. Зельдовича не заглядывал, нужно было ехать в Москву сдавать вступительные экзамены в МГУ. Астрономическое отделение я выбрал, уже находясь в комнате приемной комиссии: прошло всего два с небольшим года после полета Ю.А. Гагарина. Но все-таки решающую роль сыграла книжка с названием «Этюды о Вселенной», написанная профессором Б.А. Воронцовым-Вельяминовым. Уже будучи студентом, я слушал лекции Бориса Александровича и, естественно, сдавал ему экзамен. В школе мы учили астрономию по его стандартному учебнику для средней школы «Астрономия». Тогда мне даже в голову не приходило, что пройдет всего два-три года и он будет преподавать мне курс высшей астрономии.

Первые три года обучения прошли без Я.Б.Зельдовича. Более того, я забыл о той, купленной в Бобруйске книжке: в число стандартных университетских учебников она не входила. Она предназначалась для тех, кто постигал высшую математику путем са-

© Шакура Н.И.

Академик Я.Б. Зельдович выступает на семинаре. 1974 г.

мообразования. Академик адресовал ее начинающим инженерам и техникам. Более того, есть замечательное фото, где он дарит двухтомник своих избранных трудов Папе Римскому Павлу-Иоанну II.

Моя научная деятельность началась на третьем курсе в солнечном отделе ГАИШ МГУ. Под руководством Ольги Николаевны Митропольской (жены профессора Соломона Борисовича Пи-кельнера) и Анны Ивановны Кирюхи-ной я изучал механизмы уширения линий поглощения в спектре Солнца.

Когда я учился на третьем курсе, мне посчастливилось увидеть Якова Борисовича. Деканат физического факультета организовал в Большой Физической аудитории встречу студентов факультета с редколлегией журнала

«Успехи физических наук». Сильное впечатление произвел главный редактор, блистательный Эдуард Владимирович Шпольский. Я.Б. Зельдович присутствовал, но не выступал.

Впервые я встретился с академиком лично через год, когда он начал читать лекции для студентов четвертого курса. Осенью 1966 г. мы, студенты астрономического отделения Физического факультета МГУ, обнаружили в расписании занятий новый спецкурс -«Строение и эволюция звезд», который подготовил Я.Б. Зельдович. Лекции читались по пятницам, а по четвергам под руководством ЯБ (так звали его коллеги-ученые) в ГАИШ МГУ проводился Объединенный астрофизический семинар (ОАС). В нем участвовали не только уже сложившиеся ученые, но и

молодежь, недавно получившая высшее образование. Студенты забегали на этот семинар по мере возможности, так как в расписании учебных занятий он не значился. После своей первой лекции Яков Борисович попросил желающих получить у него тему для курсовой работы задержаться. Несколько студентов, в том числе и я, остались в аудитории. Когда очередь дошла до меня, он спросил, присутствовал ли я вчера на заседании ОАС. Я ответил утвердительно. На второй вопрос: прослушал ли я доклад о (таинственных тогда) источниках космического рентгеновского излучения, - ответ тоже был утвердительным. Тогда Я.Б. Зельдович сказал: «Попытайтесь рассчитать структуру и спектр излучения мощной ударной волны, которая возникает в результате падения газа на нейтронную звезду вблизи ее поверхности».

Первые источники космического рентгеновского излучения открыла группа американских ученых, возглавленная профессором Рикардо Джакко-ни, во время запуска 18 июня 1962 г. геофизической ракеты «Аэроби». К началу 1960-х гг. уже был известен один внеземной источник рентгеновского излучения - корона нашего Солнца. Оказалось, что корональный газ какими-то механизмами разогрет до температуры несколько миллионов градусов и светимость солнечной короны в этом диапазоне составляет примерно одну миллионную от оптической светимости Солнца (4х1033 эрг/с). Естественно было предположить, что и вокруг других звезд существуют горячие короны. Однако простой расчет показал, что детекторы тех времен даже короны ближайших звезд с расстояния в несколько парсек зафиксировать не могли. Ученые надеялись на открытие рентгеновского излучения от Луны! Конечно же, Луна не обладает атмосферой. Однако возможный механизм заключался во флюоресцентном свечении лунного грунта, облу-

чаемого рентгеновскими лучами, идущими от солнечной короны. Ракета «Аэроби» достигла высоты 225 км, полет продолжался 350 с. Из трех счетчиков Гейгера с большой площадью и хорошей чувствительностью в диапазоне энергий 1,5-6 кэВ два постоянно функционировали. В этом диапазоне земная атмосфера полностью непрозрачна. Вместо рентгеновского излучения от Луны обнаружили яркий неизвестный ранее источник, находящийся далеко за пределами Солнечной системы в направлении созвездия Скорпиона, получивший название Sco Х-1. В дальнейшем в результате ракетных пусков начали открывать новые рентгеновские источники. Постепенно создавалась карта рентгеновского неба с источниками разной природы, они получали название в соответствии с тем, в направлении какого созвездия находились (например, Cyg Х-1, Cyg Х-2, Her Х-1, Сеп Х-3). Как выяснилось позже, их рентгеновская светимость в тысячи, а то и в десятки тысяч раз превышала оптическую светимость Солнца. Так началась эпоха рентгеновской астрономии, эпоха необычайных открытий во Вселенной.

Осенью 1966 г. спустя несколько недель после начала занятий ко мне подошла ученый секретарь кафедры астрофизики, научный сотрудник ГАИШ Валентина Яковлевна Алдусева, чтобы уточнить тему моей курсовой работы. «Коля, перед вами академик Зельдович поставил задачу разработать модель аккреции», - сказала она. Именно тогда я впервые услышал загадочно прозвучавшее слово «аккреция» и крайне удивился. Ведь академик просил меня рассчитать структуру ударной волны и на первых порах не употреблял в своих беседах со мной этот термин, а в стандартных астрономических курсах тех времен понятие процессов аккреции отсутствовало.

Видя мое замешательство, Валентина Яковлевна предложила мне воспользоваться научной библиотекой

Рентгеновское излучение

Аккрецирующее

Ударная волна

Схема, поясняющая возникновение ударной волны вблизи поверхности аккрецирующей нейтронной звезды.

ГАИШ. Я выяснил, что слово «аккреция» имеет латинское происхождение (аоогеНо) и означает приращение, прибавление чего-либо. В астрономии под термином аккреция подразумевают процессы падения на тяготеющие центры различной природы окружающего их разреженного вещества. Да, тогда, более чем полвека назад, теоретическое изучение процессов аккреции вещества во Вселенной находилось в зачаточном состоянии. Более того, в 1950-х гг. были открыты звездные ветры,

не позволявшие межзвездному веществу падать на поверхность обычных звезд. Причины генерации звездных ветров у разных классов звезд (в том числе и у нашего Солнца) различные, но аккреция на обычные одиночные звезды отсутствует. Иное дело - конечные стадии эволюции звезд: белые карлики, нейтронные звезды и черные дыры.

Два типа формирования аккреционных дисков в тесных двойных системах с релятивистскими звездами.

гой - знаменитый американский физик Э. Солпитер. Они обратили внимание на энерговыделение в ударной волне, возникающей при сверхзвуковом движении черной дыры в обширном газовом облаке. Вблизи черной дыры газ после прохождения ударной волны разогревается столь сильно, что начинает излучать энергию в рентгеновском и гамма-диапазоне.

Осенью 1966 г. под руководством Якова Борисовича я начал рассчитывать структуру и спектр излучения сильной ударной волны, которая возникает вблизи поверхности аккрецирующей нейтронной звезды. Сложность задачи состояла в том, что длина пробега падающих частиц до их полной остановки в десятки раз превышает характерный масштаб взаимодействия излучения с веществом. При решении многих задач нет необходимости считать структуру ударной волны - достаточно лишь задать скачок плотности, давления, температуры и других физических величин в зависимости от скорости падения и показателя адиабаты вещества. В поставленной задаче и плотность, и температура, и другие величины менялись в зоне торможения с выделением энергии. Более того, в этой зоне не исключено возникновение коллективных плазменных процессов с выходом расчета на более сложный уровень физической кинетики вместо обычной

гидродинамики. В конце концов удалось показать, что спектры излучения ударных волн от аккрецирующих нейтронных звезд объясняли данные, полученные в результате ракетных запусков.

В 1960-е гг. появились первые отождествления космических рентгеновских источников в оптическом диапазоне, что позволило оценить расстояние до них и их светимость. Нам с ЯБ стало ясн

Для дальнейшего прочтения статьи необходимо приобрести полный текст . Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут . Стоимость одной статьи — 150 рублей .

Пoхожие научные работыпо теме «Космические исследования»

Мы рассмотрели так называемый критический режим сферически симметричной аккреции, когда вещество падает на центральный объект со всех сторон. Но сферически симметричная аккреция почти никогда не реализуется в реальных астрофизических системах: давление и плотность обычно распределяются таким образом, что аккрецию можно назвать практически двумерной.

В этой задаче предлагается оценить толщину этого диска и убедиться, что при данных параметрах аккреционный диск действительно очень тонкий.

Самогравитацией диска можно пренебречь, поэтому в простейшем случае на кусочек вещества в диске действуют только две силы - притяжение центрального объекта и давление (рис. 1).

1) Приняв, что ΔP /ρ ≈ c s 2 (c s - скорость звука в среде), и вспомнив определение кеплеровской скорости, оцените отношение H /R .
2) Оцените численное значение этого отношения на расстоянии 10 гравитационных радиусов от центрального объекта массой в 2 солнечные, если температура вещества в диске равна 10 7 K, и оно состоит исключительно из водорода. Сделайте ту же оценку для расстояния 1000 гравитационных радиусов, если температура вещества ~10 4 K. Насколько диск тонкий?

Подсказка 1

В вертикальном направлении давление уравновешивает вертикальную компоненту гравитационной силы. А это — просто сама гравитационная сила, помноженная на H /R , в предположении, что это отношение мало (позже можно будет убедиться, что предположение было верным): в данном случае синус или тангенс — одно и то же, так как угол предполагается маленьким.

Подсказка 2

По сути, соотношение из первого пункта задачи - это определение скорости звука в жидкой или газообразной среде: ее квадрат равен отношению изменения давления к изменению плотности: c s 2 ≈ ΔP /Δρ ≈ P /ρ. Численно это значение можно получить из закона Клапейрона - Менделеева : P = nkT , где n - концентрация, T - температура, а k - постоянная Больцмана.

Решение

По сути на элемент маленького объема вещества в аккреционном диске действуют две силы: сила притяжения со стороны центрального объекта и сила давления. В вертикальном направлении они уравновешивают друг друга. Проекция гравитационной силы на вертикальное направление записывается так:

\[ \frac{GM\Delta m}{R^2}\sin{\alpha}, \]

где α - угол между «горизонталью» и наклоном границы диска (рис. 1). В предположении, что диск тонкий, верны соотношения \(\sin{\alpha}\approx \alpha\approx H/R\). Значит, равенство вертикальных сил можно записать в таком виде:

\[ \Delta P \Delta S = \frac{GM\Delta m}{R^2}\frac{H}{R}. \]

Массу кусочка вещества диска Δm можно выразить через плотность и его размеры: Δm = ρΔS Δz ≈ ρΔSH . Приняв ΔP P , получим:

\[ \frac{H}{R}\sim \left(\frac{P/\rho}{GM/R}\right)^{1/2}. \]

Как уже отмечалось выше, \(\sqrt{P/\rho}\) - это скорость звука, а \(\sqrt{GM/R}\) - кеплеровская скорость кругового движения на орбите радиуса R . Получается, что по порядку величины отношение толщины к радиусу равно отношению локальной скорости звука к соответствующей кеплеровской скорости.

Из уравнения Клапейрона - Менделеева P = nkT , подставив n = N /V , где N - полное число частиц в объеме V (напомним, что по условию диск состоит из водорода, поэтому масса каждой частицы равна m p - массе протона), и разделив обе части уравнения на ρ = Δm /V , получим:

\[ c_s^2 \sim \frac{P}{\rho} \sim \frac{kT}{\Delta m/N} = \frac{kT}{m_p}. \]

Пользуясь этим равенством, приходим к соотношению

\[ \frac{H}{R} \sim \left(\frac{kT/m_p}{GM/R}\right)^{1/2}. \]

На расстоянии в a гравитационных радиусов (\(R_g=\frac{2GM}{c^2}\)) от центрального объекта, кеплеровская скорость равна \(\sqrt{GM/aR_g} = c/\sqrt{2a} \sim c/\sqrt{a}\). Таким образом, получаем компактное выражение, не зависящее от массы центрального объекта:

\[ \frac{H}{R} \sim \left(\frac{akT}{c^2 m_p}\right)^{1/2}. \]

На расстоянии 10 гравитационных радиусов при температуре 10 7 K получим H /R ≈ 3×10 −3 , а на расстоянии 1000 гравитационных радиусов при температуре 10 4 K - H /R ≈ 10 −3 . В обоих случаях толщина диска очень маленькая, то есть «дисковое» приближение действительно оправдано.

Послесловие

В 1960-х годах впервые начались эксперименты по поиску источников рентгеновского излучения в космосе. Для этого запускались ракеты, которые на короткое время выводили рентгеновские детекторы в тонкие слои атмосферы. Траектория подбиралась так, чтобы у детекторов было достаточно времени проанализировать значительную часть неба.

Прорыв был совершен в 1962 году группой под руководством Риккардо Джаконни (лауреат Нобелевской премии по физике 2002 года «за создание рентгеновской астрономии и изобретение рентгеновского телескопа»), когда впервые в истории удалось найти источник рентгеновского излучения вне Солнечной системы - Sco X-1 (Скорпион X-1). Им, как позже было предложено Иосифом Шкловским (в 1967 году) и подтверждено дальнейшими наблюдениями, оказалось излучение вещества, падающего на нейтронную звезду массой 1,4 солнечных, которая перетягивает на себя вещество обычной звезды с массой всего 0,4 солнечных.

К середине 1970-х годов, после запуска первого рентгеновского спутника UHURU , было открыто и идентифицировано свыше 300 таких источников, в том числе и экстремально яркий Cyg X-1 (Лебедь X-1) - черная дыра массой 10–20 масс Солнца, перетягивающая на себя вещество с обычной звезды массой 20–40 масс Солнца. Такие объекты получили название рентгеновские двойные (x-ray binaries), их классифицируют в зависимости от массы звезды-донора на маломассивные, массивные и двойные промежуточных масс.

Объект Cyg X-1 в том числе известен и тем, что именно из-за него в 1975 году заключили исторический шуточный спор Стивен Хокинг и Кип Торн о проблеме существования черных дыр в контексте квантовой теории поля. Хокинг ставил на то, что в этой системе нет черной дыры. По его словам, это была своеобразная страховка: он посвятил немало времени теории черных дыр и ему было бы совсем обидно, если бы в итоге оказалось, что их не существует. Но в таком случае утешением была бы победа в споре, а призом - четырехлетняя подписка на сатирический журнал Private Eye . Торн в итоге выиграл спор в начале 90-х годов, когда наблюдательных данных стало достаточно для почти полной уверенности в существовании там черной дыры. По условиям спора он получил годовую подписку на Penthouse .

К 1970-м годам в целом стало понятно, что аккреция обычной звезды на маленький плотный компаньон (нейтронную звезду или черную дыру) - это вполне нормальное явление во Вселенной, и появилась необходимость построить целостную модель такой аккреции, чтобы объяснить и описать возникающее рентгеновское излучение.

В конце 1960-х и начале 1970-х годов появился ряд работ по описанию такой аккреции, но ключевой и самой известной стала Николая Шакуры и Рашида Сюняева 1973 года, которая «по совместительству» является до сих пор самой цитируемой статьей в теоретической астрофизике за всю историю. В том же году появилось обобщение теории Шакуры - Сюняева с учетом общей теории относительности, написанное Игорем Новиковым и Кипом Торном, который, кстати, в то время в течение нескольких семестров преподавал и работал в МГУ.

Стоит отметить, что позже стало понятно, что теория дисковой аккреции не является универсальной. Несмотря на то, что эта модель достаточно хорошо описывает аккрецию в критическом режиме (когда темп аккреции близок к эддингтоновскому пределу), в других режимах аккреционный диск может разрушаться или раздуваться, образуя, к примеру, так называемые «польские пончики» (в сверхэддингтоновском пределе).

В целом, различают три режима аккреции:
«Доэддингтоновский» , когда темп сильно меньше эддингтоновского предела. В таком случае вещество очень слабо излучает (теряет энергию), и из-за этого накопленная в результате падения энергия уходит на нагрев и раздувание диска.
Эддингтоновский , когда темп примерно равен критическому пределу. В таком случае вся (или почти вся) энергия от падения уходит в излучение (теряется), и диск является достаточно холодным чтобы оставаться тонким. Как ни странно, с точки зрения компьютерных симуляций, этот случай самый тяжелый, так как помимо охвата огромного расстояния от центрального объекта, нужно также «разрешить» тонкий диск, толщина которого в 100−1000 раз меньше самого расстояния. Приходится делить пространство на очень много клеток, что вычислительно очень долго и затратно. Поэтому пока такие глобальные симуляции с тонким диском делались только для аккреции на белые карлики, где отношение толщины диска к расстоянию не такое маленькое (рис. 4, слева).
Сверхэддингтоновский , когда темп аккреции значительно превышает эддингтоновский предел. Из-за огромного количества падающего вещества излучение не успевает покинуть аккреционный диск и поглощается внутри, повторно нагревая вещество. Из-за этого диск набухает, образуя толстые диски и «польские пончики» (рис. 4, справа).

Несмотря на то, что в реальности дисковая аккреция реализуется в узком классе объектов, и что этот процесс (даже в тонком диске) далеко не такой простой и стабильный, в общих чертах предсказания Шакуры и Сюняева о свойствах спектральных наблюдений аккреционных дисков оправдались. Так, по предсказаниям авторов, помимо излучения самого диска (области \(\nu^2\) и \(\nu^{1/3}\) на рис. 5, слева) должно было быть излучение в области высоких энергий (до 10 кэВ, рентгеновский диапазон), со спектром \(\nu^{-1}\).

Если основная область (горб на низких энергиях) — это обычное «чернотельное» излучение нагретого вещества в диске, то «хвост» на высоких энергиях возникает по двум причинам (рис. 5, справа):
1) комптоновское рассеяние фотонов на поверхности диска: фотоны, благодаря рассеянию, набирают энергию;
2) возникновение так называемой короны — сильно нагретого из-за поглощения высокоэнергичных фотонов вещества непосредственно над поверхностью диска.

В 90-х годах впервые начали составлять детальные спектры таких дисков, и картина была очень похожей (рис. 6): горб на низких энергиях (соответствующий диску), высокоэнергичный хвост (излучение короны) и излучение комптонизированных фотонов. В спектре отраженных фотонов можно также заметить известную линию излучения атома железа на 6,4 кэВ, возникающую из-за поглощения рентгеновского фотона (большой пик на фиолетовой кривой).

Однако все оказалось не так просто, как хотелось бы. В том же источнике Лебедь X-1 позже заметили сильную временную зависимость спектра: спектр менялся в течение какого-то времени от «жесткого» (красная линия на рис. 7) до «мягкого» (черная линия на рис. 7). Это связали с периодическим «испарением» самой внутренней части диска, расположенной совсем близко к черной дыре, из-за слишком большого потока высокоэнергичных фотонов. Такую переменность позже стали замечать и в других рентгеновских двойных, но пока окончательной теории этого явления не существует.



Понравилась статья? Поделитесь с друзьями!