Эффективные способы обеззараживания воды. Методы очистки и обеззараживания воды. Справка Наиболее распространенный способ обеззараживания воды

Обеззараживание (дезинфекция) питьевой воды осуществляется с целью обеспечения эпидемической безопасности питьевой и предотвращения передачи через воду возбудителей инфекционных заболеваний. Обеззараживание направлено на уничтожение патогенных и условно-патогенных микроорганизмов. В целях обеззараживания применяют реагентные (химические) и безреагентные (физические) методы.

Реагентные методы основаны на использовании сильных окислителей (хлора, хлорсодержащих веществ, озона), ионов серебра и других веществ.

К безреагентным методам относятся: ультрафиолетовое облучение, воздействие ультразвука, вакуума, радиоактивное излучение то есть физические методы, а также термическая обработка. На водопроводах обычно обеззараживание воды осуществляется на последнем этапе ее очистки перед поступлением в резервуары чистой воды и разводящую водопроводную сеть. Выбор конкретного метода обеззараживания зависит от качества и количества исходной воды, методов ее предварительной очистки, условий поставки реагентов и других факторов.

Хлорирование - обработка питьевой воды водным раствором хлора с целью ее обеззараживания. Этот метод стал наиболее широко распространен среди всех методов обеззараживания воды. Это связано с относительной дешевизной хлора, несложностью используемого оборудования и надежностью обеззараживающего действия.

При обычных температуре и давлении хлор - газ желто-зеленого цвета с резким специфическим запахом. Раздражает слизистые оболочки, глаза, относится к сильнодействующим ядовитым веществам (СДЯВ) и при выбросе в воздух способен вызвать отравления людей.

Хлор можно использовать для обеззараживания воды на различных сооружениях - от шахтного колодца до крупного водопровода. В целях обеззараживания воды могут применяться газообразный хлор (доставляется в баллонах в жидком состоянии), хлорная известь, гипохлорит кальция, хлорамины, двуокись хлора и другие хлорсодержащие вещества.

Основными условиями действия хлора являются: тщательное освобождение воды от взвешенных веществ, достаточная доза хлора, полное и быстрое перемешивание хлора со всем объемом обеззараживаемой воды и контакт хлора с водой не менее 30-60 мин времени, необходимого для проявления бактерицидного действия. Для обеспечения надежного обеззараживания необходимо ввести его такое количество, чтобы покрыть всю хлорпоглощаемость воды и получить некоторый избыток свободного активного хлора. Об успешности хлорирования воды судят по остаточному активному хлору. Установлено, что дозы хлора в воде 1-3 мг/л обычно обеспечивают достаточный бактерицидный эффект. При этом содержание остаточного свободного хлора в воде после резервуаров чистой воды должно быть в пределах 0,3-0,5 мг/л. Такое хлорирование называется обычным, или хлорированием с учетом хлорпотребности.

Хлорпоглощаемость воды - количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 минут.

Из физических способов обеззараживания воды наиболее распространенным и надежным (в частности, в домашних условиях) является кипячение.

При кипячении происходит уничтожение большинства бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, которые часто содержатся в открытых водоисточниках, а как следствие и в системах центрального водоснабжения.

Кроме того, при кипячении воды удаляются растворенные в ней газы и уменьшается жесткость. Вкусовые качества воды при кипячении меняются мало. Правда для надежной дезинфекции рекомендуется кипятить воду в течение 15 - 20 минут, т.к. при кратковременном кипячении некоторые микроорганизмы, их споры, яйца гельминтов могут сохранить жизнеспособность (особенно если микроорганизмы адсорбированы на твердых частицах). Однако применение кипячения в промышленных масштабах, конечно же, не представляется возможным ввиду высокой стоимости метода.

Ультрафиолетовое излучение

Обработка УФ-излучением - перспективный промышленный способ дезинфекции воды. При этом применяется свет с длиной волны 254 нм (или близкой к ней), который называют бактерицидным. Дезинфицирующие свойства такого света обусловлены их действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. При этом бактерицидный свет уничтожает не только вегетативные, но и споровые формы бактерий.

Современные установки УФ-обеззараживания имеют производительность от 1 до 50 000 м3/ч и представляют собой выполненную из нержавеющей стали камеру с размещенными внутри УФ-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, непрерывно подвергается облучению ультрафиолетом, который убивает все находящиеся в ней микроорганизмы. Наибольший эффект обеззараживания питьевой воды достигается при расположении УФ-установок после всех других систем очистки, как можно ближе к месту конечного потребления.

Этот способ приемлем как в качестве альтернативы, так и дополнения к традиционным средствам дезинфекции, поскольку абсолютно безопасен и эффективен.

Важно отметить, что в отличие от окислительных способов при УФ-облучении не образуются вторичные токсины, и поэтому верхнего порога дозы ультрафиолетового облучения не существует. Увеличением дозы почти всегда можно добиться желаемого уровня обеззараживания.

Кроме того УФ-облучение не ухудшает органолептические свойства воды, поэтому может быть отнесено к экологически чистым методам ее обработки.

Вместе с тем, и этот способ имеет определенные недостатки. Подобно озонированию, УФ-обработка не обеспечивает пролонгированного действия. Именно отсутствие последействия делает проблематичным ее применение в случаях, когда временной интервал между воздействием на воду и ее потреблением достаточно велик, например в случае централизованного водоснабжения. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Кроме того, возможны реактивация микроорганизмов и даже выработка новых штаммов, устойчивых к лучевому поражению.

Этот способ требует строжайшего соблюдения технологии,

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззараживание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки.

Фактором, снижающим эффективность работы установок УФ-обеззараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Другим фактором, снижающим эффективность УФ-обеззараживания, является мутность исходной воды. Рассеивание лучей значительно ухудшает эффективность обработки воды.


Введение

Природная вода, как правило, не соответствует гигиеническим требованиям, предъявляемым к питьевой воде, поэтому перед подачей населению практически всегда необходима ее очистка и обеззараживание. Потребляемая человеком для питья, как и используемая на различных производствах, природная вода должна быть безопасной в санитарно-эпидемиологическом отношении, безвредной по своему химическому составу и иметь благоприятные органолептические свойства.

Известно, что ни один из современных методов обработки воды не обеспечивает ее 100 %-ной очистки от микроорганизмов. Но даже если бы система водоподготовки и могла способствовать абсолютному удалению из воды всех микроорганизмов, то всегда остается большая вероятность вторичного загрязнения очищенной воды при ее транспортировке по трубам, хранении в емкостях, контакте с атмосферным воздухом и т. д.

Санитарные правила и нормы (СанПиН) не ставят целью доведение воды по микробиологическим показателям до идеального, а следовательно, стерильного качества, при котором в ней будут отсутствовать все микроорганизмы. Задача состоит в том, чтобы удалить наиболее опасные из них для здоровья человека.



Основными документами, которые определяют гигиенические требования к качеству питьевой воды, являются: СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» и СанПиН 2.1.4.1175-02 «Питьевая вода и водоснабжение населенных мест. Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

В настоящее время известно много методов обеззараживания воды и множество приборов, использующихся их для реализации. Выбор способа обеззараживания зависит от множества факторов: источника водоснабжения, биологических особенностей микроорганизмов, экономической целесообразности и т. д.

Главная задача этого издания – дать основные сведения о современных методах обеззараживания воды для питьевых целей, краткую характеристику каждого метода, аппаратурного его оформления и возможности применения в практике централизованного и индивидуального водоснабжения.

Важно и нужно, чтобы каждый водопользователь мог правильно сформулировать цели и задачи при выборе метода обеззараживая и в конечном итоге – получения качественной питьевой воды.

В издании приведены начальные сведения по основным источникам водопользования, их характеристика и данные о пригодности источника для питьевых целей, а также нормативные документы, регламентирующие водно-санитарное законодательство, сравнительный обзор нормативных документов, регламентирующих качество питьевой воды в части обеззараживания, принятых в России и за рубежом.



Очистка воды, в том числе её обесцвечивание и осветление, является первым этапом в подготовке питьевой воды, на котором из нее удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов. Однако некоторые патогенные бактерии и вирусы проникают через очистные сооружения и содержутся в фильтрованной воде.

Для того чтобы создать надёжный барьер на пути возможной передачи через воду кишечных инфекций и других, не менее опасных болезней, и применяется её обеззараживание, т. е. уничтожение патогенных микроорганизмов – бактерий и вирусов.

Именно микробиологические загрязнения воды приводят к максимальному риску для здоровья человека. Доказано, что опасность заболеваний от присутствующих в воде болезнетворных микроорганизмов в тысячи раз выше, чем при загрязнении воды химическими соединениями различной природы.

Исходя из вышеизложенного, можно сделать вывод, что именно обеззараживание до пределов, отвечающих установленным гигиеническим нормативам, является обязательным условием получения воды для питьевых нужд.



1. Источники водоснабжения, их пригодность для обеззараживания

Все источники водозабора подразделяются на два больших класса – подземные воды и поверхностные воды. К подземным относятся: артезианские, подрусловые, родниковая. Поверхностные воды – это речная, озерная, морская и вода из водохранилищ.

В соответствии с требованиями нормативного документа ГОСТ 2761-84, выбор источника водоснабжения производится на основании следующих данных:

при подземном источнике водоснабжения – анализов качества воды, гидрогеологической характеристики используемого водоносного горизонта, санитарной характеристики местности в районе водозабора, существующих и потенциальных источников загрязнения почвы и водоносных горизонтов;

при поверхностном источнике водоснабжения – анализов качества воды, гидрологических данных, минимальных и средних расходов воды, соответствия их предполагаемому водозабору, санитарной характеристики бассейна, развития промышленности, наличия и возможности появления источников бытового, промышленного и сельскохозяйственного загрязнения в районе предполагаемого водозабора. Характерной чертой воды из поверхностных источников является наличие большой водной поверхности, которая непосредственно соприкасается с атмосферой и находится под воздействием лучистой энергии солнца, что создает благоприятные условия для развития водной флоры и фауны, активного течения процессов самоочищения.

Однако вода открытых водоемов подвержена сезонным колебаниям состава, содержит различные примеси – минеральные и органические вещества, а также бактерии и вирусы, а вблизи крупных населенных пунктов и промышленных предприятий велика вероятность ее загрязнения различными химическими веществами и микроорганизмами.

Для речной воды характерны высокая мутность и цветность, наличие большого количества органических веществ и бактерий, низкое солесодержание и жесткость. Санитарные качества речной воды низкие вследствие загрязнения ее сточной водой из жилых поселков и городов.

Для озерной и воды из водохранилищ характерны низкое содержание взвешенных частиц, высокая цветность и перманганатная окисляемость, часто наблюдается цветение воды за счет развития водорослей. Озерная вода имеет различную степень минерализации. Эти воды небезопасны в эпидемиологическом отношении.

В поверхностных водотоках происходят процессы самоочищения воды за счет физических, химических и биологических реакций. Под действием биохимических процессов при участии простейших водных организмов, микробов-антагонистов, антибиотиков биологического происхождения погибают патогенные бактерии и вирусы.


Круговорот воды в глобальном природном цикле: 1– мировой океан; 2 – почвенные и грунтовые воды; 3 – поверхностные воды суши; 4 – снег и лед; 5 – транспирация; 6 – речной (поверхностный) сток; 7 – вода в атмосфере в виде паров и атмосферной влаги.


Как правило, процессы самоочищения не обеспечивают качества воды, необходимого для хозяйственно-питьевых нужд, поэтому вся поверхностная вода подвергается процессам очищения с обязательным последующим обеззараживанием.

Воды из подземных источников водозабора имеют ряд преимуществ перед поверхностными: защищенность от внешнего воздействия и безопасность в эпидемиологическом отношении.

Морская вода содержит большое количество минеральных солей. Ее применяют в производственном водоснабжении для охлаждения, а при отсутствии пресных вод – и для целей хозяйственно-питьевого водоснабжения после опреснения.

Применение воды из подземных источников водозабора для водоснабжения имеет ряд преимуществ перед поверхностными источниками. Самыми важными из них являются защищенность от внешнего воздействия и, как следствие, безопасность в эпидемиологическом отношении.

Накопление и движение подземных вод зависит от строения пород, которые по отношению к воде разделяются на водонепроницаемые (водоупорные) и водопроницаемые. К водонепроницаемым относятся: гранит, глина, известняк; к водопроницаемым – песок, гравий, галечник и трещиноватые породы.

По условиям залегания подземные воды делятся на почвенные, грунтовые и межпластовые.

Почвенные воды наиболее близко расположены к поверхности, не защищены ни одним водонепроницаемым слоем. И как результат состав почвенных вод испытывает сильные колебания состава как в кратковременные периоды (дождь, засуха и т. д.), так и по временам года, например, таяние снега. Так как атмосферные воды могут легко попадать в почвенные, то применение почвенных вод для водоснабжения требует системы очистки и обязательного обеззараживания.

Грунтовые воды расположены ниже почвенных, глубина залегания от двух до нескольких десятков метров; они скапливаются на первом водонепроницаемом слое, но не имеют верхнего водонепроницаемого слоя. Между грунтовыми и почвенными водами может происходить водообмен, поэтому качество почвенных вод влияет на состояние грунтовых. Состав грунтовых вод подвержен несильным колебаниям и является фактически постоянным. В процессе фильтрования через слой почвы воды очищаются от минеральных примесей и частично от бактерий и микроорганизмов. Грунтовые воды являются наиболее распространенными источниками водоснабжения в сельских местностях.

Подрусловые воды – это воды, добываемые из скважин, глубина которых соответствует отметкам дна ручья, реки или озера. Может происходить просачивание речной воды в грунтовый слой, эти воды также называют подрусловыми. Состав подрусловых вод подвержен различным колебаниям, не очень надежен в санитарном отношении; и применение этих вод для системы водоснабжения требует очистки и обеззараживания.

Родник – это источник воды, самостоятельно изливающийся на поверхность. Наличие родника свидетельствует о нахождении в глубине водоупорного слоя, подпирающего водоупорный пласт, насыщенный влагой. Качество и состав родниковой воды определяется питающей ее грунтовой водой.



Межпластовые воды находятся между двумя водонепроницаемыми породами. Верхний водонепроницаемый слой защищает эти воды от проникновения атмосферных осадков и грунтовых вод. Вследствие глубокого залегания колебания состава воды незначительные, воды наиболее благополучные в санитарном отношении.

Загрязнение межпластовых вод происходит крайне редко: только при нарушении целостности водоупорных слоев или при отсутствии надзора за старыми скважинами, бывшими в эксплуатации на протяжении долгого времени.

Межпластовые воды могут иметь естественный выход на поверхность в виде восходящих ключей или родников – эти воды более всего подходят для системы питьевого водоснабжения.

Следует отметить, что единого состава воды не существует, поскольку даже артезианская вода, залегающая на одной и той же глубине, попадает к нам в дом, проходя через различные породы, изменяя при этом свой состав.


2. Классификация методов обеззараживания

В технологии водоподготовки существует много методов обеззараживания воды, которые условно можно разделить на два основных класса – химические и физические, а также их комбинирование.

В химических методах обеззараживание достигается введением в воду биологически активных соединений.

При физических методах вода подвергается обработке различными физическими воздействиями.

К химическим или реагентным методам обеззараживания воды относится введение сильных окислителей, в качестве которых используют хлор, диоксид хлора, озон, иод, гипохлорит натрия и кальция, перекись водорода, марганцевокислый калий. Из вышеперечисленных окислителей практическое применение в системах обеззараживания воды находят: хлор, озон, гипохлорит натрия, диоксид хлора. Другой химический метод – олигодинамия – воздействие на воду ионами благородных металлов.

В случае обеззараживания питьевой воды химическим методом для достижения стойкого обеззараживающего эффекта необходимо правильно определить дозу вводимого реагента и обеспечить достаточную длительность его контакта с водой. Доза реагента при этом рассчитывается, или проводится пробное обеззараживание на модельном растворе/объекте.

Доза реагента рассчитывается с избытком (остаточный хлор), гарантирующим уничтожение микроорганизмов, даже попадающих в воду еще на протяжении некоторого времени после ее обеззараживания, что обеспечивает пролонгированный эффект.

Физические методы обеззараживания:

– ультрафиолетовое облучение;

– термическое воздействие;

– ультразвуковое воздействие;

– воздействие электрическим разрядом.

При физических методах обеззараживания воды к единице её объема необходимо подвести заданное количество энергии, определяемое как произведение интенсивности воздействия (мощности излучения) на время контакта.

Эффективность обеззараживания воды химическими и физическими методами во многом зависит от свойств воды, а также от биологических особенностей микроорганизмов, т. е. их устойчивости к этим воздействиям.

Выбор метода, оценка экономической целесообразности применения того или иного метода обеззараживания воды определяется источником водоснабжения, составом воды, типом установленного оборудования водопроводной станции и ее местоположением (удаленностью от потребителей), стоимостью реагентов и оборудования дезинфекции.

Важно понимать – ни один из методов обеззараживания не является универсальным и самым лучшим. Каждый метод обладает своими достоинствами и недостатками.



3. Нормативно-технические документы водно-санитарного законодательства

Вода, потребляемая людьми, живущими в самых различных условиях, поступает из многих источников. Это могут быть реки, озера, болота, водоёмы, колодцы, артезианские скважины и т. д. Соответственно, вода, добываемая из разных по происхождению источников, различается по своим качествам и свойствам.



Существует большая вероятность того, что даже вода из близко расположенных друг к другу источников будет разительно различаться по качеству.

Промышленные предприятия, санатории, коммерческие компании, больницы и прочие лечебные учреждения, сельские жители и жители мегаполисов – все предъявляют свои, особые, требования к качеству воды.



Именно поэтому очистка и обеззараживание воды необходимы тогда, когда качество воды не отвечает требованиям потребителей.

Требования к качеству и безопасности воды установлены в следующих основных нормативных документах, перечисленных в табл. 1.


Таблица 1



Существуют также технологические нормативы и требования, связанные с проектированием систем водоподготовки (табл. 2).


Таблица 2


Безопасность воды в эпидемическом отношении определяется общим числом микроорганизмов и числом бактерий группы кишечных палочек. По микробиологическим показателям вода должна соответствовать требованиям, приведенным в табл. 3.


Таблица 3

*Индикаторные параметры качества воды. Только в целях мониторинга государства – члены ЕС на своей территории или ее части могут устанавливать дополнительные параметры, но их введение не должно ухудшать здоровье людей.

**Обязательные параметры.


4. Обработка воды сильными окислителями

Обеззараживание воды реагентными методами осуществляется добавлением в воду различных химических дезинфицирующих средств или проведением специальных мероприятий. Применение химических веществ в обработке воды обычно приводит к образованию побочных химических продуктов. Однако риск для здоровья от их воздействия ничтожен по сравнению с риском, связанным с вредоносными микроорганизмами, развивающимися в воде вследствие отсутствия ее обеззараживания или его некачественного проведения.

Минздравом разрешено применение более 200 средств для дезинфекции и стерилизации воды.

В данном разделе рассмотрим основные дезинфектанты, применяемые в системах водоснабжения России.



4.1. Хлорирование

Хлор был открыт шведским химиком Шееле в 1774 г. С этого года начинется история применения реагентов, содержащих активный хлор (уже более двух веков). Почти сразу было обнаружено его отбеливающее действие на растительные волокна – лен и хлопок. После этого открытия в 1785 г. французский химик Клод Луи Бертолле использовал хлор для беления тканей и бумаги в промышленном масштабе.

Но только в XIX в. было обнаружено, что «хлорная вода» (так в то время называли результат взаимодействия хлора с водой) обладает и дезинфицирующим действием. Можно считать, что в качестве дезинфицирующего средства хлор начал применяться с 1846 г., когда в одном из госпиталей Вены для врачей была введена практика ополаскивать руки «хлорной водой».

В 1888 г. на Международном гигиеническом конгрессе в Вене было признано, что многие заразные болезни могут распространяться посредством питьевой воды, в том числе такая опасная и распространенная на тот период, как холера. Фактически этот конгресс послужил толчком для поиска наиболее эффективного способа обеззараживания воды. Развитие темы хлорирования для обеззараживания питьевой воды связано со строительством водопроводов в больших городах. Впервые для этой цели его применили в Нью-Йорке в 1895 г. В России хлор для обеззараживания питьевой воды первый раз был использован в начале XX в. в Петербурге.

В настоящее время наиболее распространенным методом обеззараживания воды является применение хлора и его соединений. Более 90 % воды (подавляющее большинство) подвергается хлорированию. Технологическая простота процесса хлорирования и доступность реагентов обеспечили широкое внедрение хлорирования в практику водоснабжения.

Самое главное преимущество этого способа обеззараживания – способность обеспечить микробиологическую безопасность воды в любой точке распределительной сети, в любой момент времени, при ее транспортировании пользователю – именно благодаря эффекту последействия. После введения хлорирующего агента в воду он очень долго сохраняет свою активность по отношению к микробам, угнетает их ферментные системы на всем пути следования воды по водопроводным сетям от объекта водоподготовки (водозабора) до каждого потребителя.

Благодаря окислительным свойствам и эффекту последействия, хлорирование предотвращает рост водорослей, способствует удалению из воды железа и марганца, разрушению сероводорода, обесцвечиванию воды, поддержанию микробиологической чистоты фильтров и т. п.


4.2. Методика хлорирования

При выборе метода хлорирования (обработки воды хлором или другими хлорагентами) необходимо учитывать целевое назначение процесса хлорирования, характер имеющихся в воде загрязнений, особенности колебания состава воды в зависимости от сезона. Особое внимание следует уделить специфическим особенностям технологической схемы очистки воды и оборудования, входящего в состав очистных сооружений.

По целям все методики можно разделить на два больших класса: первичное (предварительное хлорирование, предхлорирование) и финишное (окончательное) хлорирование.

Первичное хлорирование – введение хлора или хлорсодержащих реагентов в воду проводится максимально близко к источнику забора воды. По своим целям первичное хлорирование служит не только для обеззараживания воды, но и для интенсификации процессов очистки воды от примесей, например обезжелезивания, коагулирования. При этом используются большие дозы хлора, стадия дехлорирования, как правило, отсутствует, так как избыточное количество хлора полностью удаляется на других стадиях очистки воды.

Финишное или окончательное хлорирование – это процесс обеззараживания воды, проводимый как последняя стадия ее подготовки, т. е. предварительно все загрязняющие вещества уже удалены и хлор расходуется только на обеззараживание.

Хлорирование проводят как небольшими дозами хлора – нормальное хлорирование, так и повышенными дозами – перехлорирование.

Нормальное хлорирование применяют при заборе воды из надежных в санитарном отношении источников. Дозы хлора должны обеспечивать необходимый бактерицидный эффект без ухудшения органолептических показателей качества воды. Допустимое количество остаточного хлора после 30-минутного контакта воды с хлором – не выше 0,5 мг/л.

Перехлорирование применяется при заборе воды из источников, характеризующихся большими колебаниями состава, особенно по микробиологическим показателям, и в том случае, если нормальное хлорирование не дает стабильного бактерицидного эффекта. Также перехлорирование применяют при наличии в воде фенолов, когда нормальное хлорирование приводит только к ухудшению органолептических показателей качества воды. Перехлорирование устраняет многие неприятные привкусы, запахи и в некоторых случаях может применяться для очистки воды от токсичных веществ. Доза остаточного хлора при перехлорировании обычно устанавливается в пределах 1–10 мг/л. Избыток остаточного хлора затем удаляют дехлорированием воды; небольшой избыток – аэрированием; большее количество – добавками восстанавливающего реагента – дехлора (тиосульфата или сульфита натрия, дисульфита натрия, аммиака, сернистого ангидрида, активированного угля).



Комбинированные методы хлорирования, т. е. обработка воды хлором совместно с другими бактерицидными препаратами, используют для усиления действия хлора или фиксации его в воде на более длительный срок. Комбинированные методы хлорирования, как правило, применяют для обработки больших количеств воды на стационарных водопроводах. К комбинированным методам относятся: хлорирование с манганированием, хлорсеребряный и хлормедный способы, а также хлорирование с аммонизацией.

Несмотря на то что хлорирование до сих пор является самым распространенным методом обеззараживания, данному методу присущи и некоторые ограничения в применении, например:

– в результате хлорирования в обрабатываемой воде могут образоваться хлорорганические соединения (ХОС);

– традиционные способы хлорирования в некоторых случаях не являются барьером на пути проникновения ряда бактерий и вирусов в воду;

– хлорирование воды, проводимое в больших масштабах, вызвало широкое распространение резистивных к хлору микроорганизмов;

– растворы хлорсодержащих реагентов коррозионно активны, что порой является причиной быстрого износа оборудования;

Комбинированные методы хлорирования, обработка воды хлором совместно с другими бактерицидными препаратами, используют для усиления действия хлора или фиксации его в воде на более длительный срок.

В целях обеспечения здоровья населения во многих странах введены государственные нормативы, ограничивающие содержание ХОС в питьевой воде. В России нормируется 74 показателя, например:

– хлороформ – 0,2 мг/л;

– дихлорбромметан – 0,03 мг/л;

– четыреххлористый углерод – 0,006 мг/л.

В настоящее время предельно допустимые концентрации для веществ, являющихся побочными продуктами хлорирования, установлены в различных развитых странах в пределах от 0,06 до 0,2 мг/л, что соответствует современным научным данным о степени их опасности для здоровья.



Процесс образования ХОС довольно сложен, растянут по времени до нескольких часов и зависит от многих факторов: дозы хлора, концентрации в воде органических веществ, времени контакта, температуры, величины рН воды, щелочности и т. д. Главной причиной образования в воде ХОС является наличие органических гуминовых и фульвокислот, а также водорослевых метаболитов. Для устранения этих примесей впоследствии требуется доочистка воды угольными фильтрами. Наиболее интенсивное образование ХОС происходит при предварительном хлорировании, когда большие дозы хлора подаются в неочищенную воду, содержащую значительное количество органических веществ. В настоящее время существуют два основных метода предупреждения образования ХОС: коррекция схемы хлорирования и отказ от применения хлора как основного метода обеззараживания воды.

При коррекции схемы хлорирования осуществляется перенос места ввода основной части хлора в конец технологической схемы водоподготовки, что позволит отказаться от подачи больших доз хлора в неочищенную воду. При выборе данной схемы важным требованием является удаление органических соединений (предшественников образования ХОС) до ввода хлора. Отказа от предварительного хлорирования и переноса подачи основной дозы хлора в конец очистных сооружений обычно вполне достаточно для решения проблемы, связанной с образованием ХОС. Однако это приводит к значительному снижению эффективности обеззараживания воды и уменьшению значения очистных сооружений в качестве барьера.

Хлорирование воды является надежным средством, предотвращающим распространение эпидемий, так как большинство патогенных бактерий (бациллы брюшного тифа, туберкулеза и дизентерии, вибрионы холеры, вирусы полиомиелита и энцефалита) весьма нестойки в хлоре.

Об исключении хлора на первичном обеззараживании уместно говорить лишь при наличии в воде органических соединений, которые при взаимодействии с хлором (и гипохлоритом) образуют тригалометаны, негативно влияющие на организм человека.

Для хлорирования воды используются такие вещества, как собственно хлор (жидкий или газообразный), гипохлорит натрия, диоксид хлора и другие хлорсодержащие вещества.


4.2.1. Хлор

Хлор является самым распространенным веществом, используемым для обеззараживания питьевой воды. Это объясняется его высокой эффективностью, простотой используемого технологического оборудования, дешевизной применяемого реагента – жидкого или газообразного хлора – и относительной простотой обслуживания.

Хлор легко растворяется в воде, после смешения газообразного хлора с водой в водном растворе устанавливается равновесие:

НСlО Н + + ОСl -

Наличие хлорноватистой кислоты в водных растворах хлора и получающиеся в результате ее диссоциации анионы ОСl - обладают сильными бактерицидными свойствами. Хлорноватистая кислота почти в 300 раз более активна, чем гипохлорит-ионы ClO - . Объясняется это уникальной способностью HClO проникать в бактерии через их мембраны. Хлорноватистая кислота подвержена разложению на свету:

2HClO -> 2O + 2HCl -> О 2 + 2HCl

с образованием хлористоводородной кислоты и атомарного кислорода в качестве промежуточного вещества, который также является сильнейшим окислителем.

Обработку воды хлором осуществляют с помощью, так называемых, хлораторов, в которых газообразный (испаренный) хлор абсорбируют водой. Полученная хлорированная вода из хлоратора сразу подается к месту ее потребления. Несмотря на то что этот метод обработки воды и является наиболее распространенным, у него тоже есть ряд недостатков. Прежде всего, сложная транспортировка и хранение больших объемов жидкого высокотоксичного хлора. При такой организации процесса неизбежно присутствуют потенциально опасные стадии – прежде всего разгрузка емкостей с жидким хлором и его испарение для перевода в рабочую форму.

Создание рабочих запасов хлора на складах представляет опасность не только для рабочего персонала станции, но и для жителей расположенных рядом домов. Как альтернативный вариант хлорирования в последние годы все шире используют обработку воды раствором гипохлорита натрия (NaClO), этот метод находит применение как на промышленных станциях водоподготовки, так и на небольших объектах, в том числе в частных домах.



4.2.2. Диоксид хлора

Диоксид хлора применяют для обеззараживания воды в Европе, США и России. В США в 1944 г. была введена в эксплуатацию одна из первых систем обеззараживания питьевой воды диоксидом хлора – система «Ниагара Фоллз». В Германии используют диоксид хлора с 1959 г. Мировой опыт применения диоксида хлора и многочисленные исследования показали его эффективность при подготовке и дезинфекции питьевых, производственных и сточных вод.

Основные способы получения диоксида хлора

Распространены три основных метода получения диоксида хлора:

– взаимодействие хлорита натрия с соляной кислотой:

5NaClO 2 + 4HCl = 4ClO 2 + 5NaCl + 2H 2 O;

– взаимодействие хлорита натрия с молекулярным хлором, (гипохлоритом натрия, хлорноватистой кислотой). Реакция проводится путем введения газообразного хлора в раствор хлорита натрия в условиях вакуума:

2NaClO 2 + Cl 2 = 2ClO 2 + 2NaCl;

– взаимодействие хлората натрия с серной кислотой и перекисью водорода:

2NaClO 3 + H 2 SO 4 + 2H 2 O = 2ClO 2 + 2O 2 + Na 2 SO 4

Эффективное действие ClО 2 обусловлено не только высоким содержанием при реакции высвобождающегося хлора, но и образующимся атомарным кислородом.

В настоящее время есть установки, использующие все эти способы получения диоксида хлора для его дальнейшего применения в процессах обеззараживания питьевой воды. Основным фактором, мешающим широкому распространению использования диоксида хлора, является его повышенная взрывоопасность, осложняющая производство, транспортировку и хранение. Современные технологии устранили этот недостаток за счет производства диоксида хлора непосредственно на месте применения в виде водного раствора безопасной концентрации. Процессы получения и дозирования диоксида хлора в обрабатываемую воду полностью автоматизированы, не требуется присутствия обслуживающего персонала. В связи с этим возможно его применение в установках относительно небольшой производительности.

Применение диоксида хлора для обеззараживания воды обладает рядом преимуществ:

– диоксид хлора не образует тригалометанов при взаимодействии с органическими веществами, при этом способствует снижению концентраций железа и марганца в воде;

– является эффективным окислителем и дезинфектантом для всех видов микроорганизмов, включая цисты (Giardia, Cryptosporidium), споровые формы бактерий и вирусы;

– дезинфицирующее действие практически не зависит от pH воды, в то время как эффективность хлора снижается с отклонением значения pH от pH=7,4;

– дезодорирует воду, разрушает фенолы – источники неприятного вкуса и запаха;

– не образует броматов и броморганических побочных продуктов дезинфекции в присутствии бромидов.

Основным недостатком применения диоксида хлора является образование побочных продуктов – хлоратов и хлоритов, содержание которых в питьевой воде необходимо контролировать. В соответствии с СанПиН, предельно допустимая концентрация хлоритов – 0,2 мг/дм 3 с санитарно-токсикологическим лимитирующим показателем, соответствующим третьему классу опасности. Эти нормы ограничивают предельную дозу диоксида при дезинфекции воды.


4.2.3. Гипохлорит натрия

В качестве альтернативного варианта в последние годы все шире используют обработку воды раствором гипохлорита натрия (NaClO), причем этот реагент находит применение как на больших станциях водоподготовки, так и на небольших объектах, в том числе и в частных домах.

Водные растворы гипохлорита натрия получают химическим:

Cl 2 + 2NaOH = NaClO + NaCl + H 2 O

или электрохимическим методом по реакции:

NaCl + H 2 O = NaClO + H 2 .

Вещество гипохлорит натрия (NaClO) в чистом химическом виде (т. е. без воды) представляет собой бесцветное кристаллическое вещество, легко разлагающееся на хлорид натрия (поваренная соль) и кислород:

2NaClO = 2NaCl + O 2 .


При растворении в воде, гипохлорит натрия диссоциирует на ионы:


Гипохлорит-ион OCl - в воде подвергается гидролизу, образуя хлорноватистую кислоту HOCl:

ОCl - + H 2 O = HOCl + OH - .

Именно наличие хлорноватистой кислоты в водных растворах гипохлорита натрия объясняет его сильные дезинфицирующие и отбеливающие свойства. Наивысшая бактерицидная способность гипохлорита проявляется в нейтральной среде, когда концентрации HClO и гипохлорит-анионов ClO - приблизительно равны.

Разложение гипохлорита сопровождается образованием ряда активных частиц, в частности, атомарного кислорода, обладающего высоким биоцидным действием. Образующиеся частицы принимают участие в уничтожении микроорганизмов, взаимодействуя с биополимерами в их структуре, способными к окислению. Исследованиями установлено, этот процесс аналогичен тому, который происходит естественным образом во всех высших организмах. Некоторые клетки человека (нейтрофилы, гепатоциты и др.) синтезируют хлорноватистую кислоту и сопутствующие высокоактивные радикалы для борьбы с микроорганизмами и чужеродными субстанциям.



Обеззараживание воды и окисление примесей с использованием гипохлорита натрия, производимого электрохимически, впервые было применено в США в конце 30-х гг. XX в… Гипохлорит натрия обладает рядом ценных свойств. Его водные растворы не имеют взвесей и поэтому не нуждаются в отстаивании в противоположность хлорной извести. Применение гипохлорита натрия для обработки воды не вызывает увеличения ее жесткости, поскольку не содержит солей кальция и магния как хлорная известь или гипохлорит кальция.

Бактерицидный эффект раствора NaClO, полученного электролизом, выше, чем у других дезинфектантов, действующее начало которых – активный хлор. Кроме того, раствор обладает еще большим окислительным действием, чем растворы, приготовленные химическим методом, поскольку содержит больше хлорноватистой кислоты (HClO).

Недостатком данного метода является то, что водные растворы гипохлорита натрия неустойчивы и со временем разлагаются даже при комнатной температуре.

Промышленностью нашей страны гипохлорит натрия выпускается в виде водных растворов различной концентрации.

В соответствии с ГОСТ 11086-76 раствор гипохлорита натрия, получаемый по химическому методу, выпускается в виде трех марок. Ниже приведены показатели по составу продуктов.



Гипохлорит натрия в виде раствора (марки А, Б или «Белизна») – это раствор гипохлорита (16–19 % NaOCl) с примесью хлорида и гидроксида натрия (рН 12–14). Оба раствора со временем разлагаются. Скорость разложения зависит от условий их хранения.

Раствор гипохлорита натрия реагент легко дозируется, что позволяет автоматизировать процесс обеззараживания воды.



4.2.4. Хлорсодержащие реагенты

Использование для обеззараживания воды хлорсодержащих реагентов (хлорной извести, гипохлоритов натрия и кальция) менее опасно в обслуживании, чем применение хлора и не требует сложных технологических решений. Правда, применяемое при этом реагентное хозяйство более громоздко, что связано с необходимостью хранения больших количеств препаратов (в 3–5 раз больше, чем при использовании хлора). Во столько же раз увеличивается объем перевозок.

При хранении происходит частичное разложение реагентов с уменьшением содержания хлора. В связи с этим необходимо обустраивать систему притяжно-вытяжной вентиляции и соблюдать меры безопасности для обслуживающего персонала. Растворы хлорсодержаших реагентов коррозионно-активны и требуют оборудования и трубопроводов из нержавеющих материалов или с антикоррозийным покрытием, при индивидуальном водоснабжении обычно не используются.



4.2.5. Хлорирование для индивидуального водоснабжения

Все большее распространение, особенно на небольших станциях водоподготовки, получают установки по производству активных хлорсодержаших реагентов электрохимическими методами.

В России несколько предприятий предлагают установки типа «Санер», «Санатор», «Хлорэл-200» для производства гипохлорита натрия методом диафрагменного электролиза поваренной соли.



Наиболее просто и часто вопросы хлорирования воды для индивидуального водоснабжения решаются применением гипохлорита натрия, в качестве реагента возможно применение раствора «Белизна».

Многим потребителям не нравится то, что льющаяся из крана вода может иметь запах хлора, однако эта проблема легко решается посредством установки угольного фильтра.

Методы подготовки воды хлорированием требуют точного дозирования реагентов в обрабатываемую воду, поскольку реагенты отличаются высокой химической активностью. Для решения задач хлорирования нужно применять современную цифровую технику, обеспечивающую точное дозирование реагента пропорционально расходу или объему обрабатываемой воды.

На рынке представлено большое разнообразие дозирующих насосов, различающихся производительностью.



4.3. Другие галогены для обеззараживания воды


4.3.1. Йодирование

Йод – химический элемент из группы галогенов, «родственниками» которого являются фтор, хлор и бром, обозначается символом I (от греч. iodes – фиолетовый; лат Iodum), имеет порядковый номер 53, атомный – 126,90, плотность твердого – 4,94 г/см 3 , температура плавления – 113,5 °С, кипения – 184,35 °С. В природе йод в основном сосредоточен в морской воде (в среднем около 0,05 мг/л). Кроме того, он есть и в морских отложениях. Это позволяет ему переходить в подземные воды, в которых его содержание может достигать более 100 мг/л. Столь высокое содержание йода характерно также для районов нефтяных месторождений. В то же время в поверхностных водах его содержание невелико (концентрация колеблется от 1 до 0,01 мкг/л).

Как показывают исследования, метод йодирования эффективен в отношении бактерий и вирусов и недостаточно эффективен при воздействии на микробные токсины и фенольные соединения. Еще одно ограничение на распространение метода йодирования накладывает появление специфического запаха при растворении йода в воде. Поэтому йодирование воды в целях её обеззараживания не выдерживает конкуренции с традиционным хлорированием, несмотря на то, что йод, в отличие от хлора, имеет такие преимущества, как инертность по отношению к аммиаку и его производным, а также устойчивость к солнечной радиации. Обработка воды йодом для целей обеззараживания не нашла широкого распространения, хотя попытки йодирования водопроводной воды предпринимались неоднократно. В настоящее время обработка воды йодом применяется лишь при малых величинах расхода или в тех случаях, когда используются специальные схемы дезинфекции воды. Так, в ряде случаев йодом дезинфицируют воду в плавательных бассейнах.

Йод относится к числу микроэлементов, функции которых в организме весьма многообразны. Он участвует в синтезе гормонов щитовидной железы, воздействует на метаболические и регенерационные процессы. Недостаточное присутствие йода в организме приводит к негативным последствиям. Впрочем, опасность для здоровья человека несет не только недостаток йода, но и его избыток. Так, повышенное количество йода в организме приводит к изменению структурно-функциональных характеристик щитовидной железы, печени, почек.

Не так давно на рынке появились йодированные напитки и вода, расфасованные по бутылкам. Такой подход, несомненно, оправдан, поскольку только сам потребитель, руководствуясь медицинскими показаниями, может решить, стоит ему пить йодированную воду или нет.

В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При прохождении через них воды йод постепенно вымывается из ионита, переходя воду. Такое решение возможно только для малогабаритных индивидуальных установок в бытовых системах доочистки воды. В таких системах йодирование воды проводится за счет дополнительной установки в одну из ступеней очистки специального фильтрующего элемента. Существенными недостатками являются изменение концентрации йода в процессе работы, невозможность точного дозирования в проточную воду и отсутствие контроля его концентрации.

На российском рынке представлены установки и картриджи «Гейзер» и «Чистая вода».


4.3.2. Бромирование

К химическим методам обеззараживания воды относится также применявшееся в начале XX в. обеззараживание соединениями брома, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии применения.

Бром – химический элемент из группы галогенов, обозначается символом Br (от греч. bromos – зловоние; название связано с неприятным запахом брома; лат. Bromum) имеет порядковый номер 35, атомный вес – 79,90, плотность жидкого – 3,11 г/см 3 , кипения – 59,2 °С.

Бром воздействует на микроорганизмы, убивает вирусы, бактерии, грибки, способствует удалению из воды органических примесей, эффективен в борьбе с водорослями. Соединения, основой которых является бром, устойчивы к солнечной радиации.

Однако несмотря на все свои преимущества, метод бромирования воды является очень дорогостоящим, поэтому он не получил широкого распространения при очистке питьевой воды и применяется в основном для обеззараживания воды в небольших бассейнах и СПА.


4.4. Озонирование


4.4.1. История озонирования

В 1840 г. немецкий ученый Шейнбейн, исследуя процессы разложения воды на водород и кислород при помощи электрической дуги, получил новый газ с резким специфическим запахом, который был им назван озоном. Затем были исследования других ученых по изучению свойств и применения озона. Изобретатель Н. Тесла запатентовал первый генератор озона в 1896 г.

Впервые процессы озонирования для очистки воды реализованы во Франции, где уже в 1907 г. был построен первый завод по озонированию воды в г. Бон Вуаяж (Франция) для нужд г. Ниццы, а в 1916 г. действовало 26 озонаторных установок (всего в Европе – 49).

В советское время озонирование было реализовано на Восточной водопроводной станции в Москве, станция была оснащена озонаторами французской компании «Трейли-газ».



4.4.2. Получение озона

Озон (O 3) – газ голубоватого или бледно-фиолетового цвета, самопроизвольно распадающийся на воздухе и в водном растворе, превращаясь в обычный кислород (О 2). Скорость распада озона резко увеличивается в щелочной среде и с ростом температуры. Доза озона зависит от назначения озонированной воды. Если речь идет об обеззараживании воды, предварительно прошедшей фильтрование и осветление, дозу озона принимают равной 1–3 мг/л, для подземной воды – 0,75–1 мг/л. При введении озона для обесцвечивания и обеззараживания загрязненной воды его необходимое количество может доходить до 5 г/л. Продолжительность контакта обеззараживаемой воды с озоном – 8–12 мин.

Озон образуется во многих процессах, сопровождающихся выделением атомарного кислорода, например при разложении перекисей, окислении фосфора и т. п.

Наиболее экономичный промышленный метод получения озона – воздействие на воздух или кислород электрическим разрядом 5000–25 000 В. Генератор озона состоит из двух установленных на небольшом расстоянии друг от друга пластинчатых или трубчатых (расположение концентрическое) электродов.

Сжижается O 3 легче, чем O 2 , и потому их несложно разделить. Озон для озонотерапии в медицине получают только из чистого кислорода. При облучении воздуха жёстким ультрафиолетовым излучением образуется озон. Те же процессы протекают в верхних слоях атмосферы, где под действием солнечного излучения образуется и поддерживается озоновый слой.

В лаборатории озон можно получить взаимодействием охлажденной концентрированной серной кислоты с пероксидом бария:

3H 2 SO 4 + 3BaO 2 = 3BaSO 4 + O 3 + 3H 2 O.


4.4.3. Обеззараживающее действие озона

При повышенном бактериальном загрязнении водоисточника или при наличии в нем патогенных микроорганизмов, энтеровирусов и цист лямблий, устойчивых к действию традиционного хлорирования, озон особенно эффективен. Механизм действия озона на бактерии полностью пока еще не выяснен, однако это не мешает его широкому использованию.

Озон гораздо более сильный окислитель, чем хлор (при применяемых дозах того и другого реагента).

По быстродействию озон эффективнее хлора: обеззараживание происходит быстрее в 15–20 раз. На споровые формы бактерий озон действует разрушающе, в 300–600 раз сильнее хлора. Это подтверждается сравнением их окислительных потенциалов: у хлора Cl 2 – 1,35 В, у озона О 3 – 1,95 В.

Отсутствие в воде химических веществ, быстро реагирующих с озоном, позволяет провести эффективное разрушение E.coli при концентрации растворенного озона 0,01–0,04 мг/л.

Для уничтожения бактерий полиомиелита (штамм Le и Mv) необходимо подвергать воду воздействию хлором в течение 1,5–3 ч при дозе окислителя 0,5–1 мг/л. В то же время озон разрушает эти бактерии за 2 мин при концентрации его в воде 0,05–0,45 мг/л.

Следует отметить такое важное свойство озона, как противовирусное воздействие. Энтеровирусы, в частности, выводящиеся из организма человека, поступают в сточные воды и, следовательно, часто могут попадать в воды поверхностных источников, используемых для питьевого водоснабжения.

Результатом многочисленных исследований установлено: остаточный озон в количестве 0,4–1,0 мг/л, сохраняемый в течение 4–6 мин, обеспечивает уничтожение болезнетворных вирусов, и в большинстве случае такого воздействия вполне достаточно, чтобы устранить все микробные загрязнения.

По сравнению с применением хлора, повышающем токсичность очищенной воды, определенной по гидробионтам, применение озона способствует снижению токсичности.


4.4.4. Аппаратурное оформление

Поскольку озон весьма токсичный газ (ПДК в воздухе зоны – 0,0001 г/м 3), схемы процессов озонирования воды предусматривают его полное использование и деструкцию. В состав озонаторного оборудования обычно входит и специальный дегазатор (деструктор) озона. Все установки озонирования смонтированы из коррозионностойких материалов, оборудованы запорной и сигнальной арматурой, оснащены автоматическими системами запуска (таймеры, реле давления, электромагнитные клапаны и т. д.) и защиты.

Метод озонирования воды технически сложен и наиболее дорогостоящ среди других методов обеззараживания питьевой воды. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это ограничивает использование данного метода в повседневной жизни.

На российском рынке бытовые озонаторы представлены моделями: «АкваМама», «Экотроника», «Озон Люкс» (RUIQI, состоит из озонатора и угольно фильтра) и др.

Озонаторные установки представлены оборудованием: станции озонирования воды серии CD-OWSG, серии СОВ-М, серии ПВО-TOG и ПВО-ZF, «Озон-ПВ» и др. Установки отличаются конструктивным исполнением и производительностью.



4.4.5. Особенности озонирования

С гигиенической точки зрения, озонирование – один из лучших способов обеззараживания питьевой воды. При высокой степени обеззараживания оно обеспечивает ее наилучшие органолептические показатели и отсутствие высокотоксичных и канцерогенных продуктов в очищенной воде.

Озон уничтожает известные микроорганизмы в 300–3000 раз быстрее, чем любые другие дезинфекторы. Озонирование не изменяет кислотность воды и не удаляет из неё необходимые человеку вещества. Остаточный озон быстро превращается в кислород (O 2) и обогащает им воду.

При озонировании не успевают возникнуть побочные вредные продукты реакции, по крайней мере, в заметных количествах.


Принципиальная технологическая схема озонирования воды: 1 – резервуар исходной воды; 2 – насос; 3 – массообменные аппараты; 4 – резервуар очищенной воды; 5 – генераторы озона; 6 – блок подготовки и сушки воздуха; 7 – деструктор озона (дегазатор).


Существуют некоторые недостатки применения озонирования, накладывающие соответствующие ограничения на его применение:

1. Метод озонирования технически сложен, требует больших расходов электроэнергии и использования сложной аппаратуры, для которой необходимо высококвалифицированное обслуживание.

2. Пролонгированное действие озона значительно меньше чем у хлора, благодаря его быстрому разрушению, поэтому повторное заражение воды при озонировании более вероятно, чем при хлорировании.

3. Озонирование может вызвать (особенно у высокоцветных вод и вод с большим количеством «органики») образование дополнительных осадков, поэтому нужно предусматривать после озонирования фильтрование воды через активный уголь. В результате озонирования образуются побочные продукты, включающие: альдегиды, кетоны, органические кислоты, броматы (в присутствии бромидов), пероксиды и другие соединения.

При воздействии на гуминовые кислоты, где есть ароматические соединения фенольного типа, может появиться и фенол.

Озон может вырабатываться только на месте потребления, поскольку его хранение и транспортировка невозможны. Для выработки озона нужен свободный газообразный кислород.


5. Олигодинамия

Олигодинамия – это воздействие ионов благородных металлов на микробиологические объекты. Говоря о олигодинамии, как правило, рассматривают три металла – золото, медь и серебро. Наиболее распространенным методом для практических целей является применение серебра, иногда используются бактерицидные растворы на основе меди. Золото не находит реального применения на практике, так как этот металл является очень дорогим.


5.1. Серебро

Серебро – химический элемент, относится к благородным металлам, обозачается символом Ag (от лат. Silver – светлый, белый, англ. Argentum, франц. Argent, нем. Silber). Имеет порядковый номер 47, атомный вес – 107,8, валентность – I. II, плотность – 10,5 г/см 3 , температура плавления – 960,5 °С, кипения – 2210 °С.

Несмотря на то, что серебряные руды разбросаны по всему миру (Австралия, Перу, Япония, Канада), основным поставщиком серебра является Мексика. Серебро – хороший проводник тепловой энергии.


5.1.1. История

Серебро известно человечеству с древнейших времён, в своё время его добывали в виде самородков, т. е. не приходилось выплавлять из руд, и многие народы считали его священным металлом, например в Ассирии и Вавилоне. В Европе по количеству серебра судили о состоянии королей. В средние века серебро и его соединения были очень популярны среди алхимиков. Позднее из серебра изготавливают посуду, чеканят монеты, делают ювелирные украшения, сейчас применяют при изготовлении электрических контактов и печатных схем, источников питания.

Бактерицидное действие серебра также известно с древнейших времен. В древних индусских трактатах встречается описание об обряде кратковременного погружения в емкость с водой раскаленного серебра.

Основоположником научного изучения механизма действия серебра на микробную клетку является швейцарский ученый Карл Негель, который в 80-е гг. XIX в. установил, что взаимодействие ионов серебра (а не самого металла) с клетками микроорганизмов вызывает их гибель. Это явление он назвал олигодинамией (от греч. «олигос» – малый, следовой и «динамос» – действие, т. е. действие следов). Немецкий ученый Винцент, сравнивая активность некоторых металлов, установил, что наиболее сильным бактерицидным действием обладает серебро, меньшим – медь и золото. Так, дифтерийная палочка погибала на серебряной пластинке через три дня, на медной – через шесть дней, на золотой – через восемь.


5.1.2. Описание метода

Большой вклад в изучение антимикробных свойств «серебряной» воды, ее применения для обеззараживания питьевой воды и пищевых продуктов внес академик Л. А. Кульский. Его экспериментами, а позднее и работами других исследователей доказано, что именно ионы металлов и их диссоциированные соединения (вещества, способные в воде распадаться на ионы) вызывают гибель микроорганизмов. Доказано, что чем выше концентрация ионов серебра, тем больше его активность и бактерицидный эффект.



Научно доказано, что серебро в ионном виде обладает бактерицидным, противовирусным, выраженным противогрибковым и антисептическим действием и служит высокоэффективным обеззараживающим средством в отношении патогенных микроорганизмов, вызывающих острые инфекции. Эффект уничтожения бактерий препаратами серебра очень велик. Он в 1750 раз сильнее действия концентрированной карболовой кислоты и в 3,5 раза сильнее действия сулемы. По данным академика Академии наук УССР Л. А. Кульского, действие «серебряной» воды (при одинаковых концентрациях) значительнее действия хлора, хлорной извести, гипохлорида натрия и других сильных окислителей. По научным данным, всего 1 мг/л. серебра в течение 30 мин вызывал полную инактивацию вирусов гриппа А, В, Митре и Сендай. Уже при концентрации 0,1 мг/л серебро обладает выраженным фунгицидным действием.

«Серебряная» вода обладает бактерицидными свойствами при достаточно высоких концентрациях серебра, но при низких концентрациях серебро оказывает только бактериостатическое действия.

Однако, выбирая серебро в качестве обеззараживающего вещества, обязательно нужно помнить, что серебро – тяжелый металл. Как и другие тяжелые металлы, серебро способно накапливаться в организме и вызывать заболевания (аргироз – отравление серебром). В соответствии с СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» допускается содержание в воде серебра не более 0,05 мг/л и СанПин 2.1.4.1116 – 02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» – не более 0,025 мг/л.

Многие потребители по старинке сутками настаивают воду в доморощенных серебряных водных фильтрах, в емкостях с монетами, ложечками и украшениями, и действительно «серебряная» вода может храниться годами. Но что кроется за таким способом очистки воды от микроорганизмов?

«Серебряная» вода обладает бактерицидными свойствами, при достаточно высоких концентрациях серебра, около 0,015 мг/л. При низких концентрациях (10 -4 … 10 -6 мг/л.), серебро оказывает только бактериостатическое действия, т. е. останавливает рост бактерий, но не убивает их. Спорообразующие разновидности микроорганизмов к серебру практически нечувствительны. Поэтому настаивание воды по старинке в доморощенных серебряных водных фильтрах, в емкостях с монетами, ложечками и украшениями не является гарантированным способом её обеззараживания.

Изложенные выше факты, таким образом, несколько ограничивают применение серебра. Оно может быть уместно только в целях сохранения исходно чистой воды для длительного хранения (например, на космических кораблях, в походах или при розливе бутилированной питьевой воды). Серебрение картриджей на основе активированного угля используют в бытовых фильтрах. Это делается с целью предотвращения обрастания фильтров микроорганизмами, так как отфильтрованные органические вещества являются хорошей питательной средой для многих бактерий.


5.1.3. Механизм воздействия

Сегодня существуют многочисленные теории, объясняющие механизм действия серебра на микроорганизмы. Наиболее распространенная – адсорбционная теория, в соответствии с которой клетка теряет жизнеспособность в результате взаимодействия электростатических сил, возникающих между клетками бактерий, имеющих отрицательный заряд, и положительно заряженными ионами серебра при адсорбции последних бактериальной клеткой.



Вораз и Тоферн (1957 г.) объясняли антимикробное действие серебра выведением из строя ферментов, содержащих SH - и СООН - группы, а K. Тонли, H. Вилсон – нарушением осмотического равновесия.

По другим теориям, происходит образование комплексов нуклеиновых кислот с тяжелыми металлами, вследствие чего нарушается стабильность ДНК и, соответственно, жизнеспособность бактерий.

Существует противоположное мнение, что серебро не оказывает прямого воздействия на ДНК клеток, а влияет косвенно, увеличивая количество внутриклеточных свободных радикалов, которые снижают концентрацию внутриклеточных активных соединений кислорода. Также допускают, что одной из причин широкого противомикробного действия ионов серебра является ингибирование трансмембранного транспорта Nа + и Cа ++ .

На основании данных механизм действия серебра на микробную клетку следующий: ионы серебра сорбируются клеточной оболочкой, которая выполняет защитную функцию. Клетка еще остается жизнеспособной, но при этом нарушаются некоторые ее функции – например, деление (бактериостатический эффект). Как только серебро адсорбировалось на поверхности микробной клетки, оно проникает внутрь её, угнетает ферменты дыхательной цепи, а также разобщает процессы окисления в микробных клетках, в результате чего клетка гибнет.



Коллоидное серебро – продукт, состоящий из микроскопических частиц серебра, взвешенных в деминерализованной и деионизированной воде. Коллоидное серебро, которое получают электролитическим методом, естественный антибиотик, разрешенный к применению в США Федеральной комиссией по питанию и медикаментам еще в 1920 г. Эффективность бактерицидного действия коллоидного серебра объясняется его способностью подавлять работу фермента, с помощью которого обеспечивается кислородный обмен чужеродных простейших микроорганизмов, поэтому они и погибают из-за нарушения снабжения кислородом, необходимого для их жизнедеятельности.



5.1.4. Аппаратурное оформление

Приготовить «серебряную» воду в домашних условиях возможно, но не эффективно. Можно настаивать воду в серебряном сосуде, погрузить в емкость с водой серебряные предметы, украшения и т. п… В настоящее время «серебряную» воду производят в электрических приборах – ионаторах. Принцип действия ионатора серебра основан на электролитическом методе. Конструктивно прибор состоит из электролизера с серебряными электродами (серебро Ср 99,99) и блока питания, подключаемого к сети постоянного тока. При пропускании постоянного тока через погруженные в воду серебряные (или серебряно-медные) электроды серебряный электрод (анод), растворяясь, насыщает воду ионами серебра. Концентрация полученного раствора при заданной силе тока зависит от времени работы источника тока и объема обрабатываемой воды. Если грамотно подобрать ионатор, то остаточное содержание растворённого в воде серебра не превысит предельной дозы 10 -4 …10 -5 мг/л (при этом в контактном слое серебрения воды концентрации могут достигать значения 0,015 мг/л), что позволяет осуществлять одновременно бактерицидную и бактериостатическую обработку воды. В табл. 4 приведены условия получения «серебряной» воды на примере ионатора «ЛК-41» (источник питания ионатора – элекотросеть переменного тока напряжением 220 В, ток нагрузки, мА 0±20 %, масса серебра, переводимого ионатором в водный раствор за 1 минуту, мг 0,4±20 %, температура обрабатываемой воды от 1 до 40 °С).


Таблица 4


Готовые растворы серебра необходимо хранить в темном месте или в непрозрачной закрытой посуде, так как на свету ионы серебра восстанавливаются до металла, раствор темнеет, а серебро – выпадает в осадок.

Начало выпуска ионаторов в России относится к далекому 1939 г, когда началось серийное производство стационарных ионаторов, переносных и дорожных серий ЛК. Производство продолжается и сейчас.

Сейчас на российском рынке представлены ионаторы разных производителей и конструктивного исполнения, с электронным управление и самые простые автономные карманные: «Невотон ИС», «Пингвин», «Сильва», «Дельфин», «ЛК», «Акватай» и др.



При работе ионатора на серебряных пластинах выделяется распыленное серебро черного цвета, которое на качество приготавливаемого раствора не влияет. В растворе серебра после отключения ионатора процесс уничтожения бактерий происходит не сразу, а в течение времени, указанного в графе время выдержки.


5.1.5. Применение активных углей и катионитов, насыщенных серебром

В настоящее время активированный уголь используется во многих процессах очистки воды, пищевой промышленности, в процессах химических технологий. Основное назначение угля – это адсорбции органических соединений. Именно отфильтрованные органические вещества являются идеальной питательной средой для размножения бактерий при остановке движения воды. Нанесение серебра на активированный уголь препятствует росту бактерий внутри фильтра благодаря бактерицидным свойствам этого металла. Технология нанесения серебра на поверхность угля уникальна тем, что серебро не смывается с поверхности угля в процессе фильтрования. В зависимости от производителя, вида исходного сырья, марки угля на поверхность наносят 0,06–0,12 % массовых серебра.

На российском рынке представлены активированные угли с нанесенным серебром производителей: С-100 Ag или С-150 Ag фирмы Purolite; AGС производится на базе активированного угля 207С компанией Chemviron Carbon; российские производители предлагают УАИ-1, изготавливаемый из древесного активного угля БАУ-А; угли марки КАУСОРБ-213 Ag и КАУСОРБ-222 Ag получены из активных углей марок КАУСОРБ-212 и КАУСОРБ-221 и т. д.




Несмотря на достаточно высокую эффективность олигодинамии в целом, нельзя говорить об абсолютной универсальности этого способа. Дело в том, что целый ряд вредных микроорганизмов оказывается вне зоны его действия – многие грибы, бактерии (сапрофитные, спорообразующие). Тем не менее пропущенная через такой фильтр, вода обычно долго сохраняет свои бактерицидные свойства и чистоту.


5.2. Медь

Медь – химический элемент, обозначается символом Сu. Название элемента происходит от названия острова Кипр (лат. Cuprum), на котором изначально добывали медь. Имеет порядковый номер 29, атомный вес – 63,546, валентность – I, II, плотность – 8,92 г/см 3 , температура плавления – 1083,4 °С, кипения – 2567 °С.

Медь – мягкий, ковкий металл красного цвета, обладает высокой тепло– и электропроводностью (занимает второе место по электропроводности после серебра).

Медь встречается в природе как в различных соединениях, так и в самородном виде. Существуют различные сплавы меди, самые известные из них латунь – сплав с цинком, бронза – сплав с оловом, мельхиор – сплав с никелем и др., как присадка медь присутствует в баббитах.

Медь широко распространена в электротехнике (из-за ее низкого удельного сопротивления) для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Ее широко применяют в различных теплообменниках, к которым относятся радиаторы охлаждения, кондиционирования и отопления из-за очень важного свойства меди – высокой теплопроводности.

Некоторые соединения меди могут быть токсичны при превышении предельно допустимых концентраций в пище и воде. Содержание меди в питьевой воде также регламентируется СанПиН 2.1.4.1074-01 и не должно превышать 2 мг/л. Лимитирующий признак вредности вещества, по которому установлен норматив, – санитарно-токсикологический.

Уровень меди в питьевой воде обычно достаточно низкий и составляет несколько микрограмм на литр. Ионы меди придают воде отчётливый «металлический вкус». Порог чувствительности органолептического определения меди в воде составляет приблизительно 2–10 мг/л.


5.2.1. История

Об антибактериальных свойствах меди известно очень давно. В древней Руси для медицинских целей применяли, так называемую, «колокольную» воду. Получали её во время литья колоколов, когда еще раскаленную отливку остужали в емкостях, наполненных водой. Колокола отливали из бронзы – сплава меди и олова, а для улучшения их звучания в этот сплав добавляли серебро. За время остывания вода обогащалась ионами меди, олова и серебра.



Совместное действие ионов меди и серебра превосходит силу «серебряной» воды, даже если в последней концентрация ионов серебра в несколько раз выше. Важно понимать, что даже «колокольная» вода, если ее применять бесконтрольно, может нанести большой вред организму.

Медь и ее сплавы иногда применяют для местного обеззараживания воды, чаще для обеззараживания в бытовых и походных условиях, обогащая воду ионами меди.

Издревле было также замечено, что вода, хранящаяся или перевозимая в медных сосудах, была, более высокого качества и долго не портилась, в отличие от воды, содержащейся или перевозимой в сосудах из других материалов (в такой воде не происходило видимого образования слизи).

Существует огромное количество исследовательских работ, подтверждающих бактерицидные свойства меди.


5.2.2. Механизм воздействия

Исследования по выяснению механизма антибактериального действия меди проводили еще в давние времена. Например, в 1973 г. ученые из лаборатории «Колумбус Баттел» провели всесторонний научный и патентный поиск, в котором собрали всю историю исследования бактериостатических и дезинфицирующих свойств меди и поверхностей медных сплавов за период 1892–1973 гг.

Было сделано открытие, а в дальнейшем подтверждено, что поверхности медных сплавов обладают особым свойством – уничтожать широкий спектр микроорганизмов.

Последние 10 лет интенсивно проводились исследования по воздействию меди на возбудителей внутрибольничных инфекций: кишечной палочки, метициллин-устойчивой формы золотистого стафилококка (MRSA), вируса гриппа А, аденовируса, патогенных грибков и пр. Исследования, проводимые в Америке, показали, что поверхность медного сплава (зависит от марки сплава) способна убить кишечную палочку через 1–4 ч контакта, при этом популяции кишечной палочки погибают на 99,9 %, в то время как, например, на поверхности из нержавеющей стали микробы могут выживать в течение недели.

Латунь, из которой часто делают дверные ручки и нажимные пластины, тоже обладает бактерицидным эффектом, но для этого требуется более продолжительное время экспозиции, чем для чистой меди.

В 2008 г. после длительных исследований Федеральное агентство по охране окружающей среды США (US ЕРА) официально присвоило меди и её нескольким сплавам статус материала, обладающего бактерицидной поверхностью.


5.2.3. Аппаратурное оформление

Медь и ее сплавы иногда применяют для местного обеззараживания воды (если нет других, более подходящих способов и реактивов, дающих гарантированный обеззараживающий эффект). Чаще ее применяют для обеззараживания воды в бытовых и походных условиях, обогащая воду ионами меди.

На рынке представлено несколько типов ионаторов – устройств, использующих принцип гальванической пары и электрофореза. В качестве второго электрода, обеспечивающего разность потенциалов, используется золото. При этом золото тонким слоем наносится на специальную подложку электрода, полностью делать электрод из одного золота не имеет смысла, поэтому внутренняя часть электрода изготавливается из сплава меди и серебра в определенном соотношении, как правило, сплав 17/1. Конструктивно это может быть простая пластина из медно-серебряного сплава (17/1) с вкраплениями золота, или более сложный прибор проточного типа с микроконтроллерным устройством управления.




6. Ультрафиолетовое обеззараживание


6.1. Описание метода

Электромагнитное излучение в пределах длин волн от 10 до 400 нм называется ультрафиолетовым.

Для обеззараживания природных и сточных вод используют биологически активную область спектра УФ-облучения с длиной волны от 205 до 315 нм, называемую бактерицидным излучением. Наибольшим бактерицидным действием (максимум вирулицидного действия) обладает электромагнитное излучение на длине волны 200–315 нм и максимальным проявлением в области 260±10 нм. В современных УФ-устройствах применяют излучение с длиной волны 253,7 нм.


а – кривая бактерицидного действия ультрафиолета б – кривая бактерицидного действия ультрафиолета и спектры поглощения ДНК и протеина


Метод УФ-дезинфекции известен с 1910 г., когда были построены первые станции для обработки артезианской воды во Франции и Германии. Бактерицидное действие ультрафиолетовых лучей объясняется происходящими под их воздействием фотохимическими реакциями в структуре молекулы ДНК и РНК, составляющими универсальную информационную основу механизма воспроизводимости живых организмов.

Результат этих реакций – необратимые повреждения ДНК и РНК. Кроме того, действие УФ-излучения вызывает нарушения в структуре мембран и клеточных стенок микроорганизмов. Всё это в конечном итоге приводит к их гибели.

Механизм обеззараживания УФ-облучением основан на повреждении молекул ДНК и РНК вирусов. Фотохимическое воздействие предполагает разрыв или изменение химических связей органической молекулы в результате поглощения энергии фотона. Имеют место также вторичные процессы, в основе которых лежит образование в воде под действием УФ-облучения свободных радикалов, которые усиливают вирулицидный эффект.

Степень инактивации или доля погибших под воздействием УФ-излучения микроорганизмов пропорциональна интенсивности излучения и времени воздействия.

Произведение интенсивности излучения и времени называется дозой облучения (мДж/см 2) и является мерой вирулицидной энергии. Из-за различной сопротивляемости микроорганизмов доза ультрафиолета, необходимая для их инактивации на 99,9 %, сильно варьируется от малых доз для бактерий до очень больших доз для спор и простейших.


Схема установки для УФ-обеззараживания воды


6.2. Доза излучения

Основными факторами, влияющими на эффективность обеззараживания природных и сточных вод УФ-облучением, являются:

– чувствительность различных вирусов к действию УФ-облучения;

– мощность лампы;

– степень поглощения УФ-облучения водной средой;

– уровень взвешенных веществ в обеззараживаемой воде.

Различные виды вирусов при одинаковых условиях облучения различают по степени чувствительности к УФ-облучению. Дозы облучения, необходимые для инактивации отдельных видов вирусов на 99,0–99,9 %, приведены в табл. 5.


Таблица 5


(Информация приведена по данным МУК 43.2030-05 «Санитарно-вирусологический контроль эффективности обеззараживания питьевых и сточных вод УФ-облучением»).

При прохождении через воду УФ-излучение ослабевает вследствие эффектов поглощения и рассеивания. Степень поглощения определяется физико-химическими свойствами обрабатываемой воды, а также толщиной её слоя. Для учёта этого ослабления вводится коэффициент поглощения водой

При выполнении очистки воды необходимо использовать методы обеззараживания, которые позволяют устранить опасность от оставшихся в ней болезнетворных бактерий после фильтрации и коагулирования. Основными из них являются: хлорирование, озонирование, применение солей тяжёлых металлов и физические методы воздействия (ультразвук и ультрафиолет). На крупных очистительных сооружениях используют хлорирование и очистку хлорсодержащими веществами. Однако, настолько ли эффективен данный метод и безопасен?

Использование хлора и содержащих его веществ

Суть этого метода обеззараживания воды заключается в создании условий для протекания химических реакций окислительно-восстановительного типа. Под действием хлора на органические соединения происходит нарушение обмена веществ клеток бактерий, что приводит к их гибели.

Эффективность реагента зависит от наличий свободного или связанного хлора в его составе, а также от его концентрации. Оптимальным вариантом считается совпадение количества реагента с концентрацией бактерий, что приведёт к полному окислению всех примесей различного происхождения. В случае перерасхода хлора возникают в воде хлопья и комочки, образованные путём адсорбции взвешенных веществ. В результате оказывается, что внутри них бактерии и микробы остались в защищённом нетронутом состоянии, что неприемлемо.

Во время процесса обеззараживания воды происходит разрушение, разложение или минерализация примесей. При наличии в составе стоков растворимых и нерастворимых элементов в ходе реакции могут возникать неприятные запахи из-за распада хлорсодержащих продуктов, а также органических веществ и организмов. Наиболее неприятными считаются фенолы и ароматические соединения, так как вкус воды изменяется при их наличии всего в одной десятимиллионной части. Ситуация может ухудшится еще больше при повышении температуры в виде образования устойчивого запаха.

Выполнять фильтрацию и осветление стоков также помогают и хлорсодержащие компоненты:

  1. Хлорноватистая кислота является слабой и поэтому её действие должно быть обеспечено активностью окружающей среды и подходящим типом химической реакции.
  2. Двуокись хлора представляет наибольший интерес при обеззараживании, так как после обработки не образуются фенолы, а соответственно и гарантировано отсутствие неприятного запаха.

Для избежания появления запаха и привкуса воды выполняют хлорирование с аммонизацией. В процессе гидролиза хлораминов за счёт медленной скорости протекания реакции и проявляется антибактериальное свойство.

Однако, несмотря на все преимущества хлорирования, у данного метода есть серьёзный недостаток, который заключается в отсутствии полной стерильности воды. В воде остаются в единичных количествах спорообразующие бактерии и некоторые виды опасных вирусов. Для их уничтожения требуется значительно повышать концентрацию хлора и время контакта.

Озонирование воды

Способ озонирования заключается в высокой диффузии озона сквозь оболочки микроорганизмов, растворённых в воде, с последующим их окислением и гибелью. Обладая высоким антибактериальным действием, озон способен разрушать болезнетворные бактерии в несколько раз быстрее хлора при прочих одинаковых условиях. Максимальная эффективность достигается при уничтожении вегетативных бактерий. Спорообразующие микроорганизмы проявляют высокую стойкость и уничтожаются гораздо хуже.

Важным моментом в данном методе является подбор концентраций озона в воде, так как от этого напрямую зависит какие бактерии будут уничтожены, а какие нет. Например, для уничтожения моллюсков дрейссены потребуется доза в 3 мг/л, что является полностью безопасным для дальнейшего существования водяных клещей и хиромонид. Поэтому необходимо проведение химического состава воды и определение типов микроорганизмов, которые в ней находятся, то есть степень загрязнённости воды. Обычно доза находится в пределах 0,5-4,0 мг/л.

Степень обеззараживания воды и осветления озоном существенно ухудшается при повышенной мутности. Однако степень очистки практически не зависит от температуры воды.

Среди преимуществ метода можно выделить такие:

  1. Улучшение вкуса воды и полное отсутствие дополнительных химически активных веществ или их соединений.
  2. Отсутствие необходимости проведения дополнительных действий при превышении концентрации озона, как, например, в случае хлорирования.
  3. Возможность создания озона за счёт химической реакции прямо в водном растворе или при помощи озонаторов.

Судя из вышесказанного, метод является безопасным и эффективным, но его распространённому применению при очистке стала необходимость использования большого количества электричества, а также сложность технической реализации.

Использование ионов серебра

Обеззараживание воды с применением ионов серебра основано на возникающих химических процессах, которые до конца не изучены. Однако были выдвинуты следующие гипотезы:

  1. Ионы нарушают обмен веществ бактерий с внешней средой, что приводит к их гибели.
  2. Ионы за счёт адсорбции на поверхности микроорганизмов выполняют каталитическую роль и окисляют плазму в присутствии кислорода.
  3. Ионы проникают внутрь вредоносной клетки и надёжно соединяются с протоплазмой, нарушая её функциональность и, таким образом, разрушая её.

Скорость химической реакции увеличивается при повышении концентрации реагирующих веществ и увеличении температуры среды. При нагревании на 10 0 скорость реакции возрастает в несколько раз по истечении некоторого промежутка времени. Поэтому полное обеззараживание при оптимальной скорости и в минимальные сроки достигается при нагреве до определённого температурного уровня, который зависит от степени загрязнений.

Также для очистки воды применяют металлическое серебро, поскольку в ней имеются ионы серебра с незначительной концентрацией, которые и выполняют роль очистки. Их накопление стимулируется наличием увеличенной площади контакта с металлическим серебром. Поэтому при использовании такого метода добиваются увеличения поверхности контакта за счёт осаждения на материал с развитой площадью, через который и пропускают воду.

Технически такой способ реализуется путём создания электролитических процессов, когда в роли материала анода выступает серебро. При помощи регулирования электрических параметров удаётся добиться нужной концентрации ионов и с высокой точностью регулировать протекание процесса обеззараживания воды. Чтобы точно дозировать ионы серебра применяют ионаторы. Концентрацию регулируют при помощи оценки содержания солей, которые являются причиной изменения потенциала между электродами. Поэтому «серебряную воду» приготавливают отдельно.

При сравнении метода ионизирования серебром с хлорированием, учёные выделяют первый, поскольку он способен убивать бактерии и микроорганизмы более эффективно. Однако и ему достаточно сложно справляться некоторыми типами бактерий, например, коли (кишечная палочка). Она является самой устойчивой и поэтому по её наличию в растворе можно качественно судить о степени очистки воды. Также как и при озонировании на скорость очистки влияет мутность раствора и количество взвешенных частиц.

Обеззараживание воды ультразвуковыми волнами

Обеззараживание ультразвуковым способом основано на создании упругих волн, частота которых превышает 20 кГц и обладает определённой интенсивностью. Они меняют свойства жидкости и разрушают органические вещества путём повышения окружающего их давления в 10 5 атмосфер (эффект кавитации). То есть гибель бактерий наступает не из-за протекающей химической реакции, а вследствие механического разрушения, вызывающего распад белковой составляющей протоплазмы. Наиболее уязвимы одноклеточные микроорганизмы, моногенетические сосальщики а также и более крупные организмы, загрязняющие воду.

Существует несколько способов создания излучения:

  1. Пъезоэлектрический эффект. При создании электрического поля кристаллы кварца способны деформироваться и излучать при этом ультразвуковые волны. Применяют кварцевые пластины одинаковой толщины и определённой формы, отшлифованные и плотно приложенные с двух сторон толстой стальной плиты. Во время подачи тока на массивную плиту в электрическом поле она излучает ультразвук.
  2. Магнитострикционный эффект. Основан на намагничивании ферромагнитных предметов под действием магнитного поля, меняющего их геометрические размеры и объём с последующим сдвигом осевой линии. Эффекта зависит от угла приложения поля относительно оси кристалла, если речь идёт о монокристалле. По измерениям уровня ультразвука данный способ является эффективнее первого.

В ходе лабораторных исследований было установлено, что ультразвук способен уничтожать за время до двух минут более 95% кишечных палочек. Однако при этом стоит понимать, что одновременно с вредоносными бактериями происходит уничтожение и полезных. В частности было установлено нарушение флоры и фауны морского планктона. То есть можно сделать вывод о том, что метод весьма эффективен, но вода при его воздействии теряет свои полезные свойства, что является его основным недостатком.

Термическая обработка

Метод основан на кипячении воды путём повышения температуры выше 100 0 С. Достаточно эффективный метод обеззараживания воды, но медленный, по сравнению с другими способами, и требующий значительных затрат энергии на нагрев. Поэтому его применяют только в тех случаях, когда объёмы воды минимальны. Он простой и не требующий особых навыков и знаний, поэтому получил распространение для получения небольших количеств питьевой воды в столовых, больницах и т. д. Из-за громоздкости и экономической нецелесообразности в промышленных или малых масштабах его не применяют.

Из недостатков можно выделить тот факт, что термообработка воды не способна удалить болезнетворные споры. Поэтому этот метод нельзя использовать при обеззараживании водных растворов с неизвестным химическим составом.

Ультрафиолетовые лампы

Обеззараживание ультрафиолетом достигается за счёт применения лучей с длиной волны в интервале 2000-2950 А, которые изменяют формы бактерий, полностью уничтожая их. Эффект зависит от сообщённой излучением энергии, содержания взвеси в растворе, количестве микроорганизмов, мутности и поглощающей способности водной среды. Поэтому принято различать такие степени влияния воздействия облучения:

  1. Безопасная доза облучения, которая не вызывает гибель бактерий.
  2. Минимальная доза, которая вызывает гибель части бактерий конкретного вида. Однако бактерии, которые находились в состоянии покоя, начинают активно расти и размножаться в специально стимулируемой среде. При длительном воздействии происходит их вымирание.
  3. Полная доза, которая приводит к обеззараживанию воды.

Кишечные палочки являются наиболее устойчивыми к УФ излучению. Поэтому по их количеству можно качественно определять степень дезинфекции воды в условиях отсутствия спорообразующих бактерий. При их наличии критерием чистоты воды служит возникновение сопротивляемости излучению бактерий, образующих споры.

Источниками УФ излучения являются ртутные, аргонно-ртутные или ртутно-кварцевые лампы. Эффективность и целесообразность их применения напрямую зависит от коэффициента поглощения. Лампы с низким давлением обладают максимальным бактериальным действием, но имеют мощность до 30 Вт, а с большим - меньшим эффектом, но повышенной мощностью.

Преимуществами метода являются:

  1. Отсутствие необходимости использования физических или химических свойств воды или применения реагентов.
  2. Отсутствие осадков и примесей.
  3. Неизменность цвета и вкуса воды, а также отсутствие посторонних запахов.
  4. Простота реализации.

То есть УФ метод является наиболее безопасным и эффективным при выполнении процесса обеззараживания воды и полностью лишён недостатков всех вышеописанных способов. Однако перед его использованием необходимо выполнить предварительную очистку, чтобы снизить содержание примесей.

При необходимости очистки воды с выполнением обеззараживания стоит обращаться к профессионалам, которые смогут оценить состав и грамотно подобрать наиболее эффективные методы. Компания ЭГА сможет выполнить поставленные задачи в кратчайшие сроки благодаря слаженным действиям команды опытных специалистов. В результате воду можно будет безопасно использовать в качестве питьевой.

Видео

Что подразумевается под термином «обеззараживание» питьевой воды? Как минимум, очищение питьевой воды от разного рода бактерий или вирусов, вызывающих заражение воды. Эта статья поможет раскрыть тему обеззараживания питьевой воды наиболее полно.


Из этой статьи вы узнаете:

    Какие методы обеззараживания питьевой воды существуют

    Как провести обеззараживание питьевой воды в домашних условиях

    В чем преимущества таблеток для обеззараживания воды

    Как провести обеззараживание воды в походных условиях

Методы обеззараживания питьевой воды

Требования к качеству питьевой воды постоянно повышаются. Это вызвано более «совершенными» источниками загрязнения. Если вода не очищена должным образом, то приготовленная на ней пища и напитки будут оказывать негативное влияние на наше здоровье. Потому обеззараживание питьевой воды является необходимым атрибутом современной жизни.

По-настоящему полезная питьевая вода должна содержать необходимую норму минералов и микроэлементов. Поэтому тотальное обеззараживание до уровня дистиллированной – не лучший выход из положения. Производители, выпускающие питьевую воду, не устают нам сообщать о новейших технологиях очистки, направляя немалые средства на рекламу своего продукта. Но какие критерии действительно важны для определения качества питьевой воды? Этих критериев немного, и они просты.

Вода для питья должна:

    выглядеть чистой (без лишних примесей и вредных микроорганизмов);

    быть вкусной и прозрачной.

Это базовый набор требований, который применим к любой питьевой воде. Конечно, есть случаи, когда необходимо применение специфических методов обеззараживания. Все чаще можно встретить такой термин, как «полезность воды». Его обычно употребляют, говоря о степени жесткости питьевой воды.

Каким бы ни было качество источника, у каждого производителя питьевой воды в процессе изготовления присутствует цикл обеззараживания.

По методу воздействия различают две группы средств для обеззараживания питьевой воды. Эти группы отображены в таблице ниже:

Самым известным и массово применяемым является обеззараживание питьевой воды хлором. Такая популярность обоснована его эффективностью, простотой внедрения и низкой стоимостью реагента.

Химические связи хлора, окисляясь в питьевой воде, оказывают губительное действие на вредоносные микроорганизмы.

Дезинфекция – не единственный эффект от хлорирования. Обеззараживание питьевой воды хлором влияет на органолептические показатели, останавливает размножение водорослей, способствует более долгому сроку службы фильтрующих элементов, очищает питьевую воду от различных форм марганца и железа, делает воду бесцветной.

Но хлорирование – далеко не идеальный способ обеззараживания. Специалисты давно бьют тревогу по поводу использования хлора для очищения питьевой воды. Результат соединений активного хлора с органикой может приводить к образованию крайне опасных для нашего здоровья тригалометанов. Эти вещества относят к канцерогенам, которые вызывают появление раковых образований в человеческом теле. Хлорированную воду нельзя кипятить, поскольку достаточная концентрация хлора может спровоцировать образование диоксина (мощнейший яд).

С соединениями хлора связывают развитие таких болезней:

    рак органов пищеварения и печени;

    нарушения работы сердца;

    повышенное давление;

    атеросклероз;

    разновидности аллергических реакций.

Минусы и опасность использования хлорированной воды заставляют искать оптимальные методы обеззараживания. Одним из этих методов может быть применение гипохлорита натрия для обеззараживания питьевой воды. Его получают в конечной точке потребления методом электролиза 2–4%-го раствора поваренной соли или минеральной воды, в которой концентрация хлорид-ионов будет не менее 50 мг/л.

Обеззараживание питьевой воды гипохлоритом натрия схоже по действию с растворенным хлором, но с более продолжительным антисептическим действием.

Несомненными преимуществами применения для обеззараживания питьевой воды являются:

    Безопасность для организма человека.

    Существенно меньший урон природе, чем при хлорировании.

Имеет этот способ обеззараживания и свои недостатки :

    Большой расход хлорида натрия. Конверсия соли не превышает 10–20 %. Остальное количество соли, вносимое в воду, лишь повышает ее концентрацию. Сэкономить на количестве соли не получится, поскольку автоматически увеличатся расходы на электроэнергию и на анодные материалы.

    Многие эксперты сходятся во мнении, что использование гипохлорита натрия для обеззараживания питьевой воды вместо хлорирования ведет к существенному увеличению риска образования тригалометанов. Процесс их образования слишком долгий, а концентрация напрямую зависит от уровня Ph (чем он выше, тем большее количество тригалометанов образуется).

Можно сделать вывод, что более разумным способом снижения уровня хлорсодержащих соединений является понижение концентрации органики еще до этапа хлорирования.


Есть и другие способы обеззараживания питьевой воды. Например, применение серебра в качестве очистителя. Такой метод хоть и эффективный, но достаточно дорогостоящий. В качестве альтернативы предлагался и метод озонирования питьевой воды. Но взаимодействие озона с другими растворенными в воде веществами, например, с фенолом, приводит к образованию еще более токсичных соединений, чем при хлорировании. Ко всему прочему, озон недолго сохраняет свои антисептические свойства, поскольку быстро разрушается.

Кроме химических, существуют и физические способы обеззараживания питьевой воды. Наиболее популярным из них является воздействие ультрафиолетом. Обеззараживание происходит путем воздействия на внутриклеточный обмен и ферментную систему клетки бактерии. Ультрафиолет избавляет воду от всех вегетативных и споровых бактериальных форм, не меняя при этом органолептических качеств питьевой воды. Способ не получил должного распространения, поскольку он более затратный, если сравнивать с хлорированием, и не обладает последействием.

Таблетки для обеззараживания питьевой воды

Каждому человеку, в зависимости от его массы, в день необходимо 2-3 л питьевой воды. Находясь в «цивилизации», у вас есть возможность прокипятить воду или купить бутылку уже очищенной минеральной воды. Вы не испытываете в данном случае никаких трудностей.

Но в экстренных ситуациях или в условиях похода, когда на кипячение питьевой воды нет времени, ситуация совершенно иная. Вода из рек, озер, родников или прудов не всегда годится к употреблению в сыром виде. Отходы промышленной и сельскохозяйственной отраслей, химические удобрения попадают в водоемы и даже в грунтовые воды, потому очистка такой воды обязательна.

Оптимальным решением в этой ситуации может стать использование специальных таблеток для обеззараживания питьевой воды. Использование таблеток позволяет пить воду из открытых водоемов и родников без предварительной обработки. Способ особенно актуален в походных условиях и на дачных участках. Обеззараживание происходит за счет действия диоксида йода или хлора (в составе таблеток), которые уничтожают все патогенные микроорганизмы в питьевой воде. Используя таблетки для обеззараживания, можно пить воду из рек и болот, не опасаясь за свое здоровье.

Таблетки для обеззараживания питьевой воды поставляются в удобных влагозащитных блистерах, обеспечивающих их долгую сохранность.

Для обеззараживания питьевой воды в полевых условиях используют таблетки, в состав которых входит натриевая соль дихлоризоциануровой кислоты. Одна таблетка может содержать 3,5; 8,5; 12,5; 17 мг этого вещества и, соответственно, 2; 5; 7,3 и 10 мг активного хлора. Как правило, одна таблетка рассчитана на литр воды.

Питьевая вода, не требующая тщательной очистки (из центрального водопровода, артезианской скважины или колодца (только бесцветная)), может быть обеззаражена таблеткой с 3,5 мг действующего вещества. Безопасность такой питьевой воды можно проверить по остаточному содержанию свободного хлора. Через полчаса после растворения таблетки его концентрация должна быть в пределах 0,3–0,5 мг/л.

Для питьевой воды, требующей более серьезной степени обеззараживания, применяют таблетки с 8,5; 12,5 и 17 мг действующего вещества и, соответственно, 5; 7,3 и 10 мг активного хлора. Воду с явными признаками помутнения или окрашивания следует предварительно процедить через фильтр из ткани. При этом количество остаточного содержания свободного хлора через полчаса после растворения действующего вещества должно находиться в пределах 1,4–1,6 мг/л.

Определить необходимую дозировку хлора можно методом тестового хлорирования. Он достаточно прост: в три емкости с питьевой водой объемом в один литр добавляют соответственно, по одной, две и три таблетки с количеством активного хлора 2 или 5 мг (в зависимости от исходного уровня загрязнения воды). После перемешивания воде дают отстояться в течение получаса и проверяют на наличие запаха хлора. Достаточно эффективной степенью обеззараживания считается такая, при которой питьевая вода имеет характерный запах хлора. Сильный запах хлора указывает на необходимость снижения концентрации действующего вещества.

Обеззараживание питьевой воды для индивидуальных нужд производят в плотно закрывающейся емкости (фляге, термосе и т. д.). После растворения таблетки в воде крышку завинчивают и тщательно взбалтывают воду. После этого крышка отвинчивается на пол-оборота и емкость несколько раз переворачивается. Это необходимо для того, чтобы действующее вещество, растворенное в питьевой воде, осело на резьбе крышки. Через полчаса после данной процедуры вода будет полностью пригодна для питья. Для очистки питьевой воды от избытка хлора и его соединений воду фильтруют при помощи активированного угля.

Обеззараживание питьевой воды в домашних условиях

Самым популярным методом обеззараживания питьевой воды остается кипячение. Под воздействием температурной обработки вода проходит процесс обеззараживания, уничтожаются все болезнетворные микроорганизмы. Для этого питьевую воду кипятят в течение 15 минут, не закрывая крышки.

Несмотря на простоту метода, он имеет существенные недостатки :

    Хлор и его соединения полностью не удаляются из воды, преобразовываясь в опасное вещество – хлороформ (доказано, что он является причиной возникновения раковых заболеваний).

    На стенках емкости, в которой кипятится питьевая вода, оседают отложения солей (самый простой пример – накипь на стенках чайника). Таким образом, концентрация солей тяжелых металлов и нитратов в кипяченой воде может быть выше, чем в исходном варианте (до кипячения).

    С точки зрения полезности, кипяченая питьевая вода не представляет никакой ценности для нашего организма.

Еще один простой и доступный метод обеззараживания питьевой воды – обычное отстаивание. Достаточно дать воде отстояться в течение 8 часов, и все летучие соединения, в том числе и хлор, испарятся. Если время от времени перемешивать воду, процесс пойдет быстрее. Но этот метод не удаляет из питьевой воды соли тяжелых металлов, они лишь могут осесть на дно емкости. Поэтому используют только 2/3 части воды, оставляя 1/3 вместе с осадком в емкости для отстаивания.

Простой и эффективный метод обеззараживания питьевой воды – растворение в ней обычной поваренной соли. Пропорция, необходимая для фильтрации: одна столовая ложка соли на два литра воды. Через 20–25 минут вода очистится от солей тяжелых металлов и вредоносных микроорганизмов.

Главный недостаток такого способа очистки в том, что полученная вода непригодна для ежедневного употребления.


Нельзя не упомянуть о таком простом, но очень эффективном способе обеззараживания питьевой воды, как заморозка. Метод предельно прост: вода заливается в металлическую или пластиковую емкость (ни в коем случае не в стеклянную) и ставится в морозильную камеру. Не стоит заполнять емкость «до краев», поскольку вода при замерзании имеет свойство расширяться.

Поскольку чистая вода замерзает быстрее воды с примесями, следует контролировать процесс заморозки. Когда половина воды превратится в лед, оставшуюся воду, со всеми примесями солей, сливают. Получившийся лед растапливают нагреванием или естественным путем. Такая вода может использоваться как для приготовления пищи, так и для питья.

Стоит отметить особую полезность талой воды, выпитой непосредственно после размораживания. Такая вода имеет целебные свойства: активизирует восстановительные процессы в организме, придает силы, уменьшает неприятные ощущения при дерматите, стоматите, бронхиальной астме и аллергических реакциях.

Отличный способ обеззараживания питьевой воды – использование кремния. Метод выглядит следующим образом: маленький кусочек кремния (продается в аптеках) бросается в банку, наполненную водой, накрывается марлей и оставляется в освещенном, но удаленном от солнечных лучей месте. Вода становится очищенной по истечении 2-3 дней. Количество кремния должно соответствовать приблизительно 3–10 г на 1–5 литров воды. После приготовления воду аккуратно сливают, оставляя в посудине некоторое количество жидкости с осадком.

Еще одним народным средством для обеззараживания питьевой воды является шунгит. Для приготовления очищенной таким образом воды достаточно положить на три дня шунгитовый камень в емкость с водой. После приготовления воду сливают, оставляя в емкости осадок, как и в случае с кремниевой водой. Для ориентира, рекомендуют пропорцию: 100 г шунгита на 1 литр воды. Приблизительно раз в шесть месяцев, шунгитовый камень очищают от налета, при помощи жесткой губки или щетки.

Существует еще один эффективный способ обеззараживания питьевой воды в домашних условиях. Это обычный активированный уголь. Он является основным компонентом в фильтрующих системах для очистки воды от примесей и улучшения ее вкусовых качеств. Активированный уголь – отличный абсорбент. Он впитывает вредные компоненты, содержащиеся в воде и устраняет нехарактерные запахи.

Использовать такой метод обеззараживания достаточно просто. В марлю заворачивается активированный уголь и помещается в емкость с водой. Для эффективного обеззараживания достаточно одной таблетки на литр воды. Уже через 8 часов вы получите вкусную очищенную воду, готовую к употреблению.

Не стоит забывать и о таком действенном методе, как обеззараживание питьевой воды с помощью серебра. Этот благородный металл уничтожает все вредоносные микроорганизмы и нейтрализует химические соединения, нежелательные для нашего организма. В воду помещают любой серебряный предмет и оставляют его на 10–12 часов.

Эффективность бактерицидного действия серебра значительно выше, чем описанные ранее методы хлорирования и очищения активированным углем. Вопрос только в высокой стоимости серебра.

Существует немало народных методов обеззараживания питьевой воды. Среди них особо популярны:

    Обеззараживание при помощи гроздей рябины. Она помещается в воду и уже через 2-3 часа вы получаете абсолютно чистую жидкость, ничем не уступающую по качеству воде, обеззараженной методом серебрения или при помощи активированного угля.

    Известны и такие средства обеззараживания, как добавление в воду ивовой коры, шелухи лука, ветки можжевельника, листьев черемухи и другие. Они отлично зарекомендовали себя как простой способ получения очищенной воды. Для приготовления такой воды в среднем необходимо 12 часов.

    Выполнить обеззараживание питьевой воды можно и при помощи уксуса, вина или йода. Для эффективной очистки на литр воды добавляют чайную ложку уксуса или три капли йода (5%-ный раствор), или 300 мл белого сухого вина. Достаточно выстоять воду с одной из этих добавок в течение 2–6 часов, и вы получите пригодную к употреблению жидкость. Правда, этот метод не способен полностью освободить воду от соединений хлора и некоторых вредоносных микроорганизмов.

    Некоторые в качестве питьевой воды используют дистиллированную воду. Она не содержит абсолютно никаких примесей и микроорганизмов, но в ней нет и ничего полезного. А постоянное употребление такой воды приводит к вымыванию необходимых организму минералов.

    Нельзя не упомянуть и про такой метод очистки, как воздействие на воду магнитами. Приверженцы данной технологии опоясывают сосуд с водой кольцом из магнитов и через 3–5 ч получают очищенную, по их мнению, воду. Кто-то даже устанавливает магниты на водопроводную трубу. Даже теоретически такой метод способен очистить воду только от соединений железа, а на практике эффективность технологии не подтверждена.

Есть еще несколько способов обеззараживания питьевой воды в домашних условиях. Один из них – это использование фильтра-кувшина с кремниево-угольным фильтром в сменном картридже. Он способен удалить из воды соединения хлора, соли тяжелых металлов и вредоносные бактерии. Более дорогой способ обеззараживания воды – использование стационарных фильтров. Стоят они значительно дороже фильтров-кувшинов, да и расходные материалы обойдутся недешево, но на сегодняшний день, это один из самых надежных методов обеззараживания воды.

Обеззараживание питьевой воды в походных условиях подручными средствами

Сегодня практически невозможно найти природный источник воды, из которого можно безопасно пить воду без предварительной обработки (обеззараживания). Конечно, сейчас не XIX век и заражение какой-либо инфекцией вовсе не смертельно, но вред здоровью может быть нанесен серьезный.

В условиях, когда нет возможности пропустить воду через фильтр или использовать традиционные домашние методы, в ход идут подручные средства для обеззараживания питьевой воды:

  • Первичное очищение песком.

Такой фильтр легко изготовить из ненужной пластиковой бутылки. В дне проделывают несколько мелких отверстий и застилают его небольшим отрезом ткани. Поверх ткани насыпают песок на 2/3 всего объема емкости. Воду из источника набирают в бутылку, и она медленно вытекает из отверстий, оставляя в песке все примеси. Для более качественного обеззараживания процедуру требуется повторить несколько раз. По мере загрязнения песок нужно заменять.

Туристы часто применяют для обеззараживания древесный уголь. Его не нужно искать, он достается из остатков костра и всегда под рукой. Уголь дробят на мелкую фракцию и засыпают в емкость для очистки воды. Следует помнить, что для данного метода обеззараживания подойдет уголь, образовавшийся от сжигания лиственных пород деревьев. Уголь от хвойных пород может придать воде нехарактерный привкус.

  • Обеззараживание хлорированием.

Мы упоминали уже о методе хлорирования питьевой воды. Несомненный плюс данного метода в длительном воздействии соединений хлора на воду. Это предотвращает такие процессы в воде, как цветение, появление мутного осадка или посторонних запахов. Но хлор вместе с тем попадает в наш организм, постепенно отравляя его. Использование хлора в нужной концентрации делает его более безопасным, а простые методы дехлорирования позволяют свести вероятность попадания хлора в организм к минимуму.

В условиях, приближенных к экстремальным, можно применять гипохлорит натрия для обеззараживания питьевой воды. Для этого отлично подходит отбеливающее средство «Белизна». В ее составе содержится только раствор гипохлорита натрия. В концентрированном виде она достаточно опасна. Поэтому при работе с ней необходимо пользоваться перчатками и очками. Но в разбавленном виде «Белизна» может послужить отличным обеззараживающим средством.

По нормам, для эффективного хлорирования воды, взятой из открытых источников, нужно использовать от 1 до 3 мг активного хлора на литр воды. 4%-ная «Белизна» содержит от 20 до 50 г/л активного хлора. Значит, для одного литра воды понадобится 0,075 мл отбеливателя. Для простоты измерения на канистру воды (20 л) добавляют 1,5 мл «Белизны».

  • Обеззараживание природными средствами.

Хорошо, если в походе у вас под рукой оказались листья малины, ромашки, зверобоя, брусники или чистотела. Эти растения давно известны как отличные антисептики. Их можно просто бросить в кипящую воду, получив вкусный и полезный чай.

Такой распространенный в природе минерал, как кремний тоже является отличным антисептиком. Он создает электрически заряженное поле и притягивает в свои коллоидные соединения вредоносные микроорганизмы. Добавление двух граммов кремния на литр воды позволяет получить безопасную для питья воду и около суток хранить ее в закрытой емкости.

  • Очистка воды с обеззараживанием промышленными средствами.

Большой популярностью у туристов пользуются переносные фильтры. С помощью таких фильтров можно без опаски пить воду практически из любого источника. Переносные фильтры способны удалить из воды все вредоносные микроорганизмы.

В продвинутых моделях портативных фильтров применяют современную трековую мембрану (полимерная пленка с 300 миллионов отверстий диаметром 0,2 мкм на 1 см² площади). Прототипом этой мембраны послужила обыкновенная живая клетка, получающая из множества таких мелких отверстий воду и полезные вещества.

Данные фильтры не требуют каких-либо расходных материалов (достаточно промыть скопившиеся остатки на мембране и фильтр вновь готов к эксплуатации). Уровень производительности фильтра можно повысить, состыковав картриджи между собой.

Если у вас возникли затруднения при выборе способа обеззараживания воды, вы можете обратиться к профессионалам. На российском рынке присутствует немало компаний, которые занимаются разработкой систем водоочистки. Самостоятельно, без помощи профессионала, выбрать тот или иной вид фильтра воды довольно сложно. И уж тем более не стоит пытаться смонтировать систему водоочистки самостоятельно, даже если вы прочитали несколько статей в Интернете и вам кажется, что вы во всем разобрались.

Надежнее обратиться в компанию по установке фильтров, которая предоставляет полный спектр услуг – консультацию специалиста, анализ воды из скважины или колодца, подбор подходящего оборудования, доставку и подключение системы. Кроме того, важно, чтобы компания предоставляла и сервисное обслуживание фильтров.

Наша компания Biokit предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.

Специалисты нашей компании готовы помочь вам:

    подключить систему фильтрации самостоятельно;

    разобраться с процессом выбора фильтров для воды;

    подобрать сменные материалы;

    устранить неполадки или решить проблемы с привлечением специалистов-монтажников;

    найти ответы на интересующие вопросы в телефонном режиме.

Доверьте очистку воды системам от Biokit – пусть ваша семья будет здоровой!



Понравилась статья? Поделитесь с друзьями!