Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней. Как решать примеры с корнями Квадратный корень и его свойства примеры

Корнем n степени из числа называют такое число, которое при возведении в эту степень даст то число, из которого извлекается корень. Почаще каждого, действия производятся с корнями квадратными, которые соответствуют 2 степени. При извлечении корня зачастую нереально обнаружить его очевидно, а итогом является число, которое нереально представить в виде естественной дроби (трансцендентное). Но применяя некоторые приемы, дозволено гораздо упростить решение примеров с корнями.

Вам понадобится

  • – представление корня из числа;
  • – действия со степенями;
  • – формулы сокращенного умножения;
  • – калькулятор.

Инструкция

1. Если не требуется безусловная точность, при решении примеров с корнями воспользуйтесь калькулятором. Дабы извлечь из числа квадратный корень, наберите его на клавиатуре, и примитивно нажмите соответствующую кнопку, на которой изображен знак корня. Как водится, на калькуляторах берется корень квадратный. Но для вычисления корней высших степеней, воспользуйтесь функцией возведения числа в степень (на инженерном калькуляторе).

2. Для извлечения квадратного корня возведите число в степень 1/2, кубического корня в 1/3 и так дальше. При этом неукоснительно рассматривайте, что при извлечении корней четных степеней, число должно быть позитивным, напротив калькулятор примитивно не выдаст результат. Это связанно с тем, что при возведении в четную степень всякое число будет позитивным, скажем, (-2)^4=(-2)? (-2)? (-2)? (-2)=16. Для извлечения квадратного корня нацело, когда это допустимо, воспользуйтесь таблицей квадратов естественных чисел.

3. Если же рядом нет калькулятора, либо требуется безусловная точность в расчетах, используйте свойства корней, а также разные формулы для облегчения выражений. Из многих чисел дозволено извлечь корень отчасти. Для этого воспользуйтесь свойством, что корень из произведения 2-х чисел равен произведению корней из этих чисел?m?n=?m??n.

4. Пример. Вычислите значение выражения (?80-?45)/ ?5. Прямое вычисление ничего не даст, от того что нацело не извлекается ни один корень. Преобразуйте выражение (?16?5-?9?5)/ ?5=(?16??5-?9??5)/ ?5=?5?(?16-?9)/ ?5. Произведите сокращение числителя и знаменателя на?5, получите (?16-?9)=4-3=1.

5. Если подкоренное выражение либо сам корень построены в степень, то при извлечении корня воспользуйтесь тем свойством, что показатель степени подкоренного выражения дозволено поделить на степень корня. Если деление производится нацело, число вносится из-под корня. Скажем, ?5^4=5?=25. Пример. Вычислить значение выражения (?3+?5)?(?3-?5). Примените формулу разности квадратов и получите (?3)?-(?5)?=3-5=-2.

Обычная дробь – число своенравное. Изредка доводится помучиться, дабы обнаружить решение задачи с дробью и представить его в надлежащем виде. Обучившись решать примеры с дробью , вы легко совладаете с этой неприятной вещью.

Инструкция

1. Разглядите сложение и вычитание дробей. К примеру, 5/2+10/5. Приведите обе дроби к всеобщему знаменателю. Для этого обнаружьте то число, которое дозволено поделить без остатка на знаменатель и первой, и 2-й дроби. В нашем случае это число 10. Преобразуйте вышеуказанные дроби, получается 25/10+20/10.Сейчас сложите между собой числители, а знаменатель оставьте непоколебимым. Получается 45/10.Дозволено сократить полученную дробь, то есть поделить числитель и знаменатель на одно и то же число. Получается 9/2.Выделите целую часть. Обнаружьте наивысшее число, которое дозволено поделить без остатка на знаменатель. Это число 8. Поделите его на знаменатель – это и будет целая часть. Выходит, в итоге получается 4 1/2.Произведите схожие действия при вычитании дробей.

2. Разглядите умножение дробей. Тут все примитивно. Перемножьте между собой числители и знаменатели. К примеру, 2/5 умножить на 4/2 получается 8/10. Сократите дробь, получается 4/5.

3. Разглядите деление дробей. При выполнении этого действия опрокиньте одну из дробей, а после этого перемножьте числители и знаменатели. Скажем, 2/5 поделить на 4/2 – получается 2/5 умножить на 2/4 – получается 4/20. Сократите дробь, получается 1/5.

Видео по теме

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств, изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Yandex.RTB R-A-339285-1

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a: b =   a: b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению, необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a · b) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 (1) = 2 , 7 · 4 · 12 17 · 0 , 2 (1) .

Необходимо доказать свойство арифметического квадратного корня из частного: a: b = a: b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a: b 2 = a 2: b 2 , а a 2: b 2 = a: b , при этом a: b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0: 16 = 0: 16 , 80: 5 = 80: 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a < 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a < 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и (− a) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a < 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением (a m) 2 , тогда a 2 · m = (a m) 2 = a m .

Пример 3

3 8 = 3 4 = 3 4 и (- 8 , 3) 14 = - 8 , 3 7 = (8 , 3) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m - 1 2 · m - 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде. . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения, которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a < b , выполняется неравенство a n < b n ;
  8. Свойство сравнения, которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 < a < 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m < a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , (21) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , (21) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

Покажем примеры:

Пример 4

8 27 3 = 8 3 27 3 и 2 , 3 10: 2 3 10 = 2 , 3: 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m - 1 2 · m - 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m - 1 2 · m - 1 = a очевидно. При a < 0 получаем соответственно a = - a и a 2 · m = (- a) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m - 1 2 · m - 1 = a будет справедливо, так как за нечетной степени рассматривается - c 2 · m - 1 = - c 2 · m - 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

7 4 4 = 7 = 7 , (- 5) 12 12 = - 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и (- 3 , 39) 5 5 = - 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись. Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению. С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a < b . Рассмотрим неравенство a n < b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a < b . Следовательно, a n < b n при a < b .

Для примера приведем 12 4 < 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 < a < 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 < a < 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m < a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0 , 7 3 < 0 , 7 5 и 12 > 12 7 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Площадь квадратного участка земли равна 81 дм². Найти его сторону. Предположим, что длина стороны квадрата равна х дециметрам. Тогда площадь участка равна х ² квадратным дециметрам. Так как по условию эта площадь равна 81 дм², то х ² = 81. Длина стороны квадрата — положительное число. Положительным числом, квадрат которого равен 81, является число 9. При решении задачи требовалось найти число х, квадрат которого равен 81, т. е. решить уравнение х ² = 81. Это уравнение имеет два корня: x 1 = 9 и x 2 = — 9, так как 9² = 81 и (- 9)² = 81. Оба числа 9 и — 9 называют квадратными корнями из числа 81.

Заметим, что один из квадратных корней х = 9 является положительным числом. Его называют арифметическим квадратным корнем из числа 81 и обозначают √81, таким образом √81 = 9.

Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а .

Например, числа 6 и — 6 являются квадратными корнями из числа 36. При этом число 6 является арифметическим квадратным корнем из 36, так как 6 — неотрицательное число и 6² = 36. Число — 6 не является арифметическим корнем.

Арифметический квадратный корень из числа а обозначается так: √а.

Знак называется знаком арифметического квадратного корня; а — называется подкоренным выражением. Выражение √а читается так: арифметический квадратный корень из числа а. Например, √36 = 6, √0 = 0, √0,49 = 0,7. В тех случаях, когда ясно, что речь идет об арифметическом корне, кратко говорят: «корень квадратный из а «.

Действие нахождения квадратного корня из числа называют извлечением квадратного корня. Это действие является обратным к возведению в квадрат.

Возводить в квадрат можно любые числа, но извлекать квадратные корни можно не из любого числа. Например, нельзя извлечь квадратный корень из числа — 4. Если бы такой корень существовал, то, обозначив его буквой х , мы получили бы неверное равенство х² = — 4, так как слева стоит неотрицательное число, а справа отрицательное.

Выражение √а имеет смысл только при а ≥ 0. Определение квадратного корня можно кратко записать так: √а ≥ 0, (√а )² = а . Равенство (√а )² = а справедливо при а ≥ 0. Таким образом, чтобы убедиться в том, что квадратный корень из неотрицательного числа а равен b , т. е. в том, что √а =b , нужно проверить, что выполняются следующие два условия: b ≥ 0, b ² = а.

Квадратный корень из дроби

Вычислим . Заметим, что √25 = 5, √36 = 6, и проверим выполняется ли равенство .

Так как и , то равенство верно. Итак, .

Теорема: Если а ≥ 0 и b > 0, то т. е. корень из дроби равен корню из числителя, деленному на корень из знаменателя. Требуется доказать, что: и .

Так как √а ≥0 и √b > 0, то .

По свойству возведения дроби в степень и определению квадратного корня теорема доказана. Рассмотрим несколько примеров.

Вычислить , по доказанной теореме .

Второй пример: Доказать, что , если а ≤ 0, b < 0. .

Еще примерчик: Вычислить .

.

Преобразование квадратных корней

Вынесение множителя из-под знака корня. Пусть дано выражение . Если а ≥ 0 и b ≥ 0, то по теореме о корне из произведения можно записать:

Такое преобразование называется вынесение множителя из под знака корня. Рассмотрим пример;

Вычислить при х = 2. Непосредственная подстановка х = 2 в подкоренное выражение приводит к сложным вычислениям. Эти вычисления можно упростить, если вначале вынести из-под знака корня множители: . Подставив теперь х = 2, получим:.

Итак, при вынесении множителя из-под знака корня представляют подкоренное выражение в виде произведения, в котором один или несколько множителей являются квадратами неотрицательных чисел. Затем применяют теорему о корне из произведения и извлекают корень из каждого множителя. Рассмотрим пример: Упростить выражение А = √8 + √18 — 4√2 вынося в первых двух слагаемых множители из-под знака корня, получим:. Подчеркнем, что равенство справедливо только при а ≥ 0 и b ≥ 0. если же а < 0, то .

Подкоренное выражение – это алгебраическое выражение, которое находится под знаком корня (квадратного, кубического или более высокого порядка). Иногда значения разных выражений могут быть одинаковыми, например, 1/(√2 - 1) = √2 + 1. Упрощение подкоренного выражения призвано привести его к некоторой канонической форме записи. Если два выражения, которые записаны в канонической форме, по-прежнему различны, их значения не равны. В математике считается, что каноническая форма записи подкоренных выражений (а также выражений с корнями) соответствует следующим правилам:

  • Если можно, избавьтесь от дроби под знаком корня
  • Избавьтесь от выражения с дробным показателем
  • Если можно, избавьтесь от корней в знаменателе
  • Избавьтесь от операции умножения корня на корень
  • Под знаком корня нужно оставить только те члены, из которых нельзя извлечь целочисленный корень

Эти правила можно применить к выполнению тестовых заданий. Например, если вы решили задачу, но результат не совпадает ни с одним из приведенных ответов, запишите результат в канонической форме. Имейте в виду, что ответы к тестовым заданиям даются в канонической форме, поэтому если записать результат в той же форме, вы с легкостью определите правильный ответ. Если в задаче требуется «упростить ответ» или «упростить подкоренные выражения», необходимо записать результат в канонической форме. Более того, каноническая форма упрощает решение уравнений, хотя с некоторыми уравнениями легче справиться, если на время забыть о канонической форме записи.

Шаги

Избавление от полных квадратов и полных кубов

Избавление от выражения с дробным показателем

Преобразуйте выражение с дробным показателем в подкоренное выражение. Или, если нужно, преобразуйте подкоренное выражение в выражение с дробным показателем, но никогда не смешивайте такие выражения в одном уравнении, например, так: √5 + 5^(3/2). Допустим, вы решили работать с корнями; квадратный корень из n будем обозначать как √n, а кубический корень из n как куб√n.

Избавление от дробей под знаком корня

Согласно канонической форме записи корень из дроби нужно представить в виде деления корней из целых чисел.

    Посмотрите на подкоренное выражение. Если оно представляет собой дробь, перейдите к следующему шагу.

    Замените корень из дроби отношением двух корней согласно следующему тождеству: √(a/b) = √a/√b.

    • Не пользуйтесь этим тождеством, если знаменатель отрицательный или включает переменную, которая может быть отрицательной. В этом случае сначала упростите дробь.
  1. Упростите полные квадраты (если они есть). Например, √(5/4) = √5/√4 = (√5)/2.

Избавление от операции умножения корней

Избавление от множителей, которые являются полными квадратами

    Разложите подкоренное число на множители. Множители – это некоторые числа, при перемножении которых получается исходное число. Например, 5 и 4 являются двумя множителями числа 20. Если из подкоренного числа нельзя извлечь целочисленный корень, разложите такое число на возможные множители и найдите среди них полный квадрат.

    • Например, запишите все множители числа 45: 1, 3, 5, 9, 15, 45. 9 является множителем 45 (9 х 5 = 45) и полным квадратом (9 = 3^2).
  1. Вынесите за знак корня множитель, который является полным квадратом. 9 представляет собой полный квадрат, потому что 3 х 3 = 9. Избавьтесь от 9 под знаком корня и запишите 3 перед знаком корня; под знаком корня останется 5. Если вы внесете число 3 под знак корня, оно будет умножено на себя и на число 5, то есть 3 х 3 х 5 = 9 х 5 = 45. Таким образом, 3√ 5 – это упрощенная форма записи √45.

    • √45 = √(9 * 5) = √9 * √5 = 3√5.
  2. Найдите полный квадрат в подкоренном выражении с переменной. Запомните: √(a^2) = |а|. Такое выражение можно упростить до «а», но только если переменная принимает положительные значения. √(a^3) можно разложить на √а * √(а^2), потому что при перемножении одинаковых переменных их показатели складываются (а * а^2 = а^3).

    • Таким образом, в выражении а^3 полным квадратом является а^2.
  3. Вынесите за знак корня переменную, которая является полным квадратом. Избавьтесь от a^2 под знаком корня и запишите «а» перед знаком корня. Таким образом, √(а^3) = а√а.

    Приведите подобные члены и упростите любые рациональные выражения.

Избавление от корней в знаменателе (рационализация знаменателя)

    Согласно канонической форме знаменатель , если возможно, должен включать только целые числа (или многочлен в случае присутствия переменной).

    • Если знаменатель представляет собой одночлен под знаком корня, например, [числитель]/√5, умножьте числитель и знаменатель на этот корень: ([числитель] * √5)/(√5 * √5) = ([числитель] * √5)/5.
      • В случае кубического корня или корня большей степени умножьте числитель и знаменатель на корень с подкоренным выражением в соответствующей степени, чтобы рационализировать знаменатель. Если, например, в знаменателе находится куб√5, умножьте числитель и знаменатель на куб√(5^2).
    • Если знаменатель является выражением в виде суммы или разности квадратных корней, таких как √2 + √6, умножьте числитель и знаменатель на сопряженное выражение, то есть выражение с обратным знаком между его членами. Например: [числитель]/(√2 + √6) = ([числитель] * (√2 - √6))/((√2 + √6) * (√2 - √6)). Затем с помощью формулы разности квадратов ((а + b)(а - b) = а^2 - b^2) рационализируйте знаменатель: (√2 + √6)(√2 - √6) = (√2)^2 - (√6)^2 = 2 - 6 = -4.
      • Формулу разности квадратов можно также применять к выражению вида 5 + √3, потому что любое целое число является квадратным корнем из другого целого числа. Например: 1/(5 + √3) = (5 - √3)/((5 + √3)(5 - √3)) = (5 - √3)/(5^2 - (√3)^2) = (5 - √3)/(25 - 3) = (5 - √3)/22
      • Этот метод можно применять к сумме квадратных корней, таких как √5 - √6 + √7. Если сгруппировать это выражение в виде (√5 - √6) + √7 и умножить его на (√5 - √6) - √7, вы не избавитесь от корней, а получите выражение вида а + b * √30, где «а» и «b» – одночлены без корня. Затем полученное выражение можно умножить на сопряженное: (а + b * √30)(а - b * √30), чтобы избавиться от корней. То есть если сопряженным выражением можно воспользоваться один раз, чтобы избавиться от некоторого количества корней, то им можно пользоваться сколько угодно раз, чтобы избавиться от всех корней.
      • Этот метод также применим к корням более высоких степеней, например, к выражению «корень 4-й степени из 3 плюс корень 7-й степени из 9». В этом случае умножьте числитель и знаменатель на выражение, сопряженное выражению в знаменателе. Но здесь сопряженное выражение будет немного другим по сравнению с теми, которые описаны выше. Про этот случай можно почитать в учебниках по алгебре.
  1. Упростите числитель после того, как вы избавились от корней в знаменателе. В числителе находится произведение исходного выражения и сопряженного выражения.

В ходе решения некоторых математических задач приходится оперировать с квадратными корнями. Поэтому важно знать правила действий с квадратными корнями и научиться преобразовывать выражения, их содержащие. Цель – изучение правил действий с квадратными корнями и способов преобразования выражений с квадратными корнями.

Мы знаем, что некоторые рациональные числа выражаются бесконечными периодическими десятичными дробями, как, например, число 1/1998=0,000500500500… Но ничто не мешает вообразить и число, в десятичном разложении которого не обнаружится никакого периода. Такие числа называются иррациональными.

История иррациональных чисел восходит к удивительному открытию пифагорейцев еще в VI в. до н. э. А началось все с простого, казалось бы, вопроса: каким числом выражается длина диагонали квадрата со стороной 1?

Диагональ разбивает квадрат на 2 одинаковых прямоугольных треугольника, в каждом из которых она выполняет роль гипотенузы. Поэтому, как следует из теоремы Пифагора, длина диагонали квадрата равна

. Сразу же возникает соблазн достать микрокалькулятор и нажать клавишу извлечения квадратного корня. На табло мы увидим 1,4142135. Более совершенный калькулятор, выполняющий вычисления с высокой точностью покажет 1,414213562373. А с помощью современного мощного компьютера можно вычислить с точностью до сотен, тысяч, миллионов знаков после запятой. Но даже самый высокопроизводительный компьютер, сколько бы долго он ни работал, никогда не сможет ни рассчитать все десятичные цифры, ни обнаружить в них какой-либо период.

И хотя у Пифагора и его учеников компьютера не было, обосновали этот факт именно они. Пифагорейцы доказали, что у диагонали квадрата и его стороны общей меры (т.е. такого отрезка, который целое число раз откладывался бы и на диагонали, и на стороне) не существует. Следовательно, отношение их длин – число

– нельзя выразить отношением некоторых целых чисел m и n. А коль скоро это так, добавим мы, десятичное разложение числа не обнаруживает никакой регулярной закономерности.

По следам открытия пифагорейцев

Как доказать, что число

иррационально? Предположим, существует рациональное число m/n=. Дробь m/n будем считать несократимой, ведь сократимую дробь всегда можно привести к несократимой. Возведя обе части равенства, получим . Отсюда заключаем, что m – число четное, то есть m=2К. Поэтому и, следовательно, , или . Но тогда получим что и n четное число, а этого быть не может, поскольку дробь m/n несократима. Возникает противоречие.

Остается сделать вывод, что наше предположение неверно и рационального числа m/n, равного

не существует.

1. Квадратный корень из числа

Зная время t , можно найти путь при свободном падении по формуле:

Решим обратную задачу.

Задача . Сколько секунд будет падать камень, сброшенный с высоты 122,5 м?

Чтобы найти ответ, нужно решить уравнение

Из него находим, что Теперь осталось найти такое положительное число t, что его квадрат равняется 25. Этим числом является 5, так как Значит, камень будет падать 5 с.

Искать положительное число по его квадрату приходится и при решении других задач, например при отыскании длины стороны квадрата по его площади. Введем следующее определение.

Определение . Неотрицательное число, квадрат которого равен неотрицательному числу а, называется квадратным корнем из а. Это число обозначают

Таким образом

Пример . Так как

Из отрицательных чисел нельзя извлекать квадратные корни, так как квадрат любого числа или положителен, или равен нулю. Например, выражение

не имеет числового значения. знак называют знаком радикала (от латинского «радикс» – корень), а число а – подкоренным числом. Например, в записи подкоренное число равно 25. Так как Это означает, что квадратный корень из числа, записанного единицей и 2n нулями, равен числу, записываемому единицей и n нулями: = 10…0

2n нулей n нулей

Аналогично доказывается, что

2n нулей n нулей

Например,

2. Вычисление квадратных корней

Мы знаем, что не существует рационального числа, квадрат которого равен 2. Это означает, что

не может быть рациональным числом. Он является иррациональным числом, т.е. записывается в виде непериодической бесконечной десятичной дроби, причем первые десятичные знаки этой дроби имеют вид 1,414… Чтобы найти следующий десятичный знак, надо взять число 1.414х , где х может принимать значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, возвести по порядку эти числа в квадрат и найти такое значение х, при котором квадрат меньше, чем 2, но следующий за ним квадрат больше, чем 2. Таким значением является х=2. Далее повторяем то же самое с числами вида 1,4142х . Продолжая этот процесс, получаем одну за другой цифры бесконечной десятичной дроби, равной .

Аналогично доказывается существование квадратного корня из любого положительного действительного числа. Разумеется, последовательное возведение в квадрат весьма трудоемкое занятие, и потому существуют способы быстрее находить десятичные знаки квадратного корня. С помощью микрокалькулятора можно найти значение

с восемью верными цифрами. Для этого достаточно ввести в микрокалькулятор число а>0 и нажать клавишу – на экране высветится 8 цифр значения . В некоторых случаях приходится использовать свойства квадратных корней, которые мы укажем ниже.

Если точность, даваемая микрокалькулятором, недостаточна, можно воспользоваться способом уточнения значения корня, даваемым следующей теоремой.

Теорема. Если а – положительное число и – приближенное значение для по избытку, то



Понравилась статья? Поделитесь с друзьями!