Схема всеволнового КВ приемника › Схемы электронных устройств. Двух- и трехдиапазонный кв приемник сергея беленецкого

Изменяя параметры только входных и гетеродинных контуров, можно создавать самые разные варианты любительских приемников на НЧ диапазоны.

Двухдиапазонный приемник на 80 и 160м.

Для улучшения повторяемости было решено полностью отказаться от самодельных катушек и выполнить ВЧ цепи на малогабаритных аксиальных дросселях стандартных номиналов (типа ЕС24 и т.п.). Благодаря дополнительно проведенной оптимизации значений контурных элементов под стандартный номинальный ряд удалось упростить не только схему, но и настройку.

Фрагмент принципиальной схемы ВЧ блока двухдиапазонного варианта приемника на 80 и 160м приведена на рис.5.

Непоказанная часть схемы полностью соответствует базовому варианту (см. рис.2 в предыдущей статье), для облегчения чтения нумерация совпадающих элементов сохранена, вновь введенные ее продолжают.

В показанном на схеме положении переключателя SA1 включен диапазон 160м. Двухконтурный ПДФ L1C1C2C3С39L2C4C5С6С42 подобен по структуре примененному в базовом варианте и имеет полосу пропускания не уже 1,8-2Мгц. Внешняя антенна, в зависимости от ее параметров, подключаются аналогично базовому варианту. Для перехода на 80м диапазон замыкаются контакты переключателя SA1 и параллельно катушкам L1,L2 величиной 22мкГн подключаются катушки L5,L6 величиной 8,2мкГн, в результате полоса пропускания ПДФ смещается точно на частоты диапазона 80м – 3,5-3,8МГц. Контур ГПД на 160м диапазоне состоит из катушки L3, КПЕ С38 и растягивающих конденсаторов С40,С8,С9, и С10, величина последних выбрана из расчета обеспечить с достаточным запасом диапазон перестройки 2,28-2,52Мгц. При включении 80м диапазона параллельно L3 подключаются катушка L7 и конденсатор С41, в результате диапазон перестройки ГПД смещается к требуемому 3,98-4,32Мгц, также с некоторым запасом. Немного расширенный диапазон перестройки ГПД позволил отказаться от операции точной укладки диапазонов. В результате при установке исправных деталей указанных на схеме номиналов ВЧ блок практически не требует настройки, достаточно только подстроить триммеры С39 и С42 по максимуму сигнала на середине 160м диапазона.

Разумеется, что при отсутствии готовых дросселей можно применить самодельные катушки, самостоятельно рассчитав требуемое кол-во витков, например по методике, приведенной в первой части статьи. При этом схему можно еще более упростить, отказавшись от триммеров, а настройку ВЧ блока провести регулировкой индуктивности самодельных катушек по стандартной или упрощенной методике, приведенной ниже.

Трехдиапазонный КВ приемник радионаблюдателя на 20,40 и 80м.

Этот приемник немного сложнее, но и совершеннее предыдущих.

Его принципиальная схема приведена на рис.6.


Сигнал с антенного разъема подается на регулируемый аттенюатор, выполненный на сдвоенном потенциометре R24 и далее через катушку связи L1 поступает на двухконтурный полосовой диапазонный фильтр (ПДФ) L2C5С11, L3C17С21 с емкостной связью через конденсатор С10.

Переключение диапазонов производится трехпозиционным переключателем. В положении контактов, показанном на схеме включен диапазон 14МГц. При переключении на 7МГц к контурам подключаются дополнительные контурные конденсаторы С4,С9 и С16,С20, смещающие резонансные частоты контуров на середину рабочего диапазона и дополнительный конденсатор связи С15. При переключении на диапазон 3,5МГц к контурам ПДФ подключаются соответственно конденсаторы С8,С14 и С13.

Для расширения полосы на 80м диапазоне введены резисторы R1,R2.

Этот трехдиапазонный ПДФ рассчитан на применение большой, полноразмерной антенны и сделан по упрощенной схеме всего на двух катушках, что оказалось возможным благодаря нескольким особенностям — верхние диапазоны, где требуется бОльшие чувствительность и селективность — узкие (меньше 3%), нижний 80м, где очень высок уровень помех и вполне достаточно чувствительности порядка 3-5мкВ — широкий (9%). Примененная схема имеет самый большой коэффициент передачи по напряжению на 14Мгц с почти пропорциональным частоте снижением в сторону 3,5Мгц, причем избирательность по зеркальному каналу при ПЧ 500кГц даже на 14Мгц будет порядка 30дБ — вполне приличное значение, учитывая, что в полосе 13-13,35Мгц нет мощных вещательных станций.

Приемник работает очень чисто, даже без аттенюатора без заметных на слух перегрузок держит сигнал – уровнем как минимум до S9+40дБ. Чувствительность при с/шум=10дБ не хуже 3мкВ (80м) и 1мкв (40 и 20м). Ток потребления в покое — порядка 20мА и не более 50мА при максимальной громкости на динамик 8 Ом.

Гетеродин выполнен по схеме индуктивной трехточки (схема Хартли) на полевом транзисторе VT3. Контур гетеродина содержит катушку L5 и конденсаторы С18,С19. Конденсатором переменной емкости (КПЕ) С51 частота генерации перестраивается в пределах 13,48-13,87МГц. При переключении на 7МГц к контуру параллельно С18 и С19 подключаются дополнительные растягивающие конденсаторы С6 и С7,С12, смещающие диапазон перестройки частоты до 7,48-7,72МГц. При переключении на диапазон 3,5МГц подключаются соответственно конденсаторы С1 и С2С3, а диапазон перестройки ГПД равен 3,98-4,32МГц.

Связь контура с цепью затвора VT2 осуществляется посредством конденсатора С16, на котором, благодаря выпрямляющему действию p-n перехода диода VD1, образуется автосмещение, достаточно жестко стабилизирующее амплитуду колебаний в широком диапазоне частот. Так, например, при возрастании амплитуды колебаний запирающее напряжение также увеличивается и усиление транзистора падает, уменьшая коэффициент положительной обратной связи (ПОС). Собственно, ПОС получается при протекании тока транзистора по части витков катушки L5. Отвод к истоку сделан от 1/3 части общего числа витков.

Остальная часть схемы полностью соответствует базовому варианту.

Все детали приемника, кроме разъемов, переменных резисторов и КПЕ, смонтированы на плате из одностороннего фольгированного стеклотекстолита размером 67,5х95мм. Авторский чертеж платы со стороны печатных проводников приведен на рис. 7, расположение деталей – на рис.8, а фото собранной платы на рис.9. на чертеже предусмотрено посадочное место под три наиболее распространенных конструктива ЭМФ (круглых и прямоугольльных). С целью уменьшения размеров, плата рассчитана на установку в основном SMD компонентов — резисторы и дроссель L6 типоразмера 1206, а конденсаторы 0805, электролитические импортные малогабаритные. Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные. В качестве SA1,SA2 применены переключатели П2К с независимой фиксацией и четырьмя переключающими группами. Технологические перемычки J1,J2, подобные применяемым на компьютерных материнских платах и адаптерах.

В качестве VT1,VT3 можно применить практически любые современные полевые транзисторы с p-n переходом, с начальным током стока не менее 5-6мА – BF245В,С, J(U)309 -310, КП307Б, Г, КП303Г, Д, Е, КП302 А,Б. В качестве VT4 применимы любые кремниевые n-p-n транзисторы с коэффициентом передачи тока на менее 100, BC847- ВС850, MMBT3904, MMBT2222 и т.п.

Катушки приемника L1-L4 выполнены на малогабаритных каркасах от малогабаритных катушек ПЧ 455 кГц размерами 8х8х11 мм, от широко распространенных недорогих импортных радиоприемников и магнитол, подстроечником которых служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвертку. Катушки L2-L3 содержат по 9 витков провода ПЭЛ, ПЭВ диаметром 0,13-0,23мм. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 1 виток, а катушка связи L4 наматывается поверх нижней части катушки L3 и содержит 5 витков такого же провода.

Гетеродинная катушка L3 намотана на импортном малогабаритном многосекционном каркасе контура ПЧ 10,7 МГц. Она содержит 19 витков провода ПЭЛ (ПЭВ) диаметром 0,13-0,17мм, отвод от 7 витка. Намотку следует проводить с максимальным натяжением провода, равномерно размещая витки во всех секциях каркаса, после чего катушка плотно фиксируется штатной капроновой гильзой. Весь контур заключен в штатный латунный экран.

При необходимости все катушки можно выполнить на любых других, доступных радиолюбителю каркасах, разумеется изменив число витков для получения требуемой индуктивности и, соответственно, подкорректировав чертеж печатной платы под новый конструктив.


Внешний вид приемника приведен на рис.10, а вид на внутренний монтаж – на рис.11.


Конструкция шкального механизма видна на фото.


Она аналогична показанному в . В верхней части передней панели вырезано прямоугольное окно шкалы, сзади которого на расстоянии 1мм закреплен винтами М1,5 длиной 15мм подшкальник. На эти же винты насажены промежуточные капроновые ролики диаметром 4мм, обеспечивающие необходимый ход тросика. Шкала линейная, с отображением всех трех диапазонов. Ось, на котором закреплена ручка настройки, использована от переменного резистора. От этого же резистора использованы элементы крепления оси на передней панели. На оси следует сделать небольшую выточку (полукруглым надфилем, зажав в патрон электродрели ось), в которую укладывают тросик (два витка вокруг оси). Стрелка шкалы – отрезок провода ПЭВ диаметром 0,55мм.

Проверка и настройка трактов НЧ и ПЧ аналогична базовому варианту. Далее, подключив высокоомный вольтметр (например, китайский цифровой мультиметр) через развязывающий резистор 51-100кОм к затвору VT3, убеждаемся, что на всех диапазонах отрицательное напряжение автосмещение не менее 1В. Затем по падению напряжения на R4 проверяем ток стока VT1 и если он более 7-8мА, увеличиваем R4 до получения требуемого, допустимо порядка 5-8мА.

Затем снимаем технологическую перемычку (джампер) J1 и вместо нее к этому разъему подключаем частотомер и приступаем к укладке диапазонов ГПД, которую начинаем с диапазона 20м (переключатели SA1,SA2 отжаты). Подбором растягивающих конденсаторов С18,С19 добиваемся требуемой ширины перестройки (с небольшим запасом – порядка 15-20 кГц по краям), а сердечником катушки L5 совмещаем начало диапазона и больше катушку не трогаем. Далее, нажав переключатель SA2, переходим к укладке диапазона 40м, для чего сначала устанавливаем триммер С12 в среднее положение (это легко определить по изменению частоты при его регулировке), подбором растягивающих конденсаторов С6,С7 добиваемся как требуемой ширины перестройки, так и примерного совпадения начала диапазонов, после чего подстройкой С12 совмещаем их более точно. Затем переходим на диапазон 80м (отжав SA2 и нажав SA1) и аналогично, подбором растягивающих конденсаторов С6,С7, укладываем его границы и триммером С3 совмещаем начало диапазона с предыдущими.

При указанной выше конструкции катушки и использовании термостабильных конденсаторов группы МПО (а по сведениям автора к ним относятся практически все импортные SMD конденсаторы емкостью менее 1000пФ)

стабильность частоты получилась вполне приличной — после 15мин прогрева приемник держит SSB станции не менее получаса на 20м диапазоне и не менее часа — на нижних и это без всяких дополнительных усилий по термокомпенсации.

Настройку контуров ДПФ следует начинать с диапазона 80м. Подключив к выходу приемника индикатор уровня выходного сигнала (миливольтметр переменного тока, осциллограф, а то и просто мультиметр в режиме измерения напряжения постоянного тока к выводам конденсатора С42) устанавливаем частоту ГСС на середину диапазона, т.е. 3,65МГц. Расчетная АЧХ ПДФ на этом диапазоне широкая «двугорбая», с провалом в середине диапазона примерно на 1дБ. Чтобы правильно настроить этот ПДФ без ГКЧ, воспользуемся следующим приемом. Временно зашунтируем катушку L3 резистором150-220 Ом и настроившись приемником на сигнал ГСС вращением сердечника катушки L2 добьемся максимального уровня сигнала (максимальной громкости приема). По мере роста громкости следует при помощи плавного аттенюатора R1 поддерживать уровень сигнала на выходе УНЧ примерно 0,3-0,5В. Если при вращении сердечника после достижения максимума наблюдается снижение шумов, это свидетельствует, что входной контур у нас настроен правильно, возвращаем сердечник в положение максимума и можем приступать к следующему этапу. Если вращением сердечника (в обе стороны) не получается зафиксировать четкий максимум, т.е. сигнал продолжает расти, то наш контур неправильно настроен и понадобится подбор конденсатора. Так если сигнал продолжает увеличиваться при полном выкручивании сердечника, емкость конденсаторов обоих контуров С8 и С14 надо немного уменьшить, как правило (если катушка выполнена правильно) достаточно поставить следующий ближайший номинал. И опять проверяем возможность настройки входного контура в резонанс. И наоборот, если сигнал продолжает уменьшаться при полном вкручивании сердечника, емкость конденсаторов обоих контуров С8 и С14 надо увеличить. После этого перенесем шунтирующий резистор на катушку L2 и вращением сердечника катушки L3 добьемся максимального уровня сигнала. Вот теперь ПДФ диапазона 80м настроен правильно. Больше катушки не трогаем и переходим на диапазон 20м и 40м. АЧХ ПДФ этих диапазонов узкие, одногорбые, поэтому они настраиваются просто по максимуму сигнала в средней части диапазона – частоты соответственно 14,175 и 7,1МГц. С начала настраиваем ПДФ диапазона 20м регулировкой триммеров С5,С21, а затем – 40м, соответственно регулировкой триммеров С4,С20. При достаточно большой антенне настройку ПДФ по приведенной выше методике можно сделать непосредственно по шумам (сигналам) эфира, памятуя, что лучшее прохождение, а значит, более сильные сигналы, на диапазонах 80 и 40м будут в темное время суток, а на 20м – в светлое.

Литература.

1. Форум «Простой приемник наблюдателя с ЭМФ» http://www.cqham.ru/forum/showthread.php?t=16795
2. Шульгин К. Основные параметры дисковых ЭМФ на частоту 500кгц. - Радио, 2002, №5, с.59-61.
3. Беленецкий С. Двухдиапазонный КВ приемник «Малыш». - Радио, 2008, №4, с.51, №5, с.72.
4. Беленецкий С. Приставка для измерения индуктивности в практике радиолюбителя. - Радио, 2005, №5, с.26-28.

KB-приемник предназначен для приема радиостанций, работающих SSB и CW в диапазоне 40М. Но, путем изменения параметров входного и гетеродинного контуров его можно приспособить для работы на любом другом радиолюбительском диапазоне или диапазонах, если сделать переключаемые или сменные контура.
Особенности приемника следующие: Во-первых, в тракте ВЧ-ПЧ и демодулятора работает микросхема МС3361 , предназначенная для работы в портативных радиостанциях с узкополосной частотной модуляцией. Во-вторых, схема супергетеродинная, но в ней используется не специализированный фильтр ПЧ для связной аппаратуры, а пьезокерамический фильтр ПЧ для радиовещательных приемников с AM-диапазонами. Это несколько ухудшает параметры по селективности по соседнему каналу, потому что ширина полосы канала на радиолюбительских диапазонах существенно ниже ширины радиовещательной станции. Но все же, учитывая доступность данного фильтра, с этим недостатком вполне можно мириться.

Схема приемника показана на рис.1. Но, для лучшего понимания работы схемы, приведу структурную схему микросхемы МС3361, взятую из тех. документации её производителя (рис.2).



Входной сигнал от антенны поступает на входной контур, состоящий из катушки L1 и конденсаторов С1, С2. Контур настроен на середину диапазона и не перестаивает при настройке на станцию.
Сигнал с контура поступает на вход смесителя микросхемы А1 через разделительный конденсатор СЗ.
В качестве гетеродина используется собственный гетеродин микросхемы А1, к которому через выводы 1 и 2 подключен гетеродинный контур на катушке L1 и конденсаторах С4, С5, С6, С7. Контур при настройке на станцию перестраивается переменным конденсатором С5 емкостью 7-180 пФ. Это конденсатор с твердым диэлектриком от старого советского радиоприемника «Юность». Пределы перестройки этого конденсатора слишком широки для данного случая, поэтому его перекрытие по емкости ограничено с помощью последовательно ему включенного конденсатора С4.
Продукт преобразования выделяется на выводе 3 микросхемы А1. Сигнал промежуточной частоты из него выделяется уже упомянутым пъезокерамическим фильтром на 455 кГц от радиовещательного приемника с АМ-диапазоном. Первоначально автор пытался повысить селективность по соседнему каналу путем последовательного включения двух таких фильтров. Но положительных результатов это не дало, потому что были очень высокие потери чувствительности. В результате пришлось остановиться на варианте с одним фильтром.
Через вывод 5 А1 выделенный сигнал ПЧ поступает на усилитель ПЧ микросхемы. Детектор данной микросхемы предназначен для детектирования ЧМ сигнала. Для того чтобы его «научить» демодулировать SSB и CW потребовалось контур демодулятора заменить генератором опорной частоты, сделанном на транзисторе VT1. Т1 - это готовый экранированный контур тракта ПЧ от импортного транзисторного приемника с AM -диапазоном и ПЧ 455 кГц. Такие контура стандартные, у них внутри две катушки, одна с отводом, и контурный конденсатор. Есть так же и подстроен ни к индуктивности. Катушка связи контура включена так, как должна быть была включена контурная катушка частотного детектора. А сам контур работает в генераторе опорной частоты, состоящем из него и транзистора VT1. Сигнал частоты 455 кГц от него поступает на демодулятор, и заставляет его работать как смеситель частот, поступающих от этого опорного генератора и частоты сигнала ПЧ, поступающего на него от усилителя ПЧ микросхемы.
Низкочастотный демодулированный сигнал выделяется на выводе 9 микросхемы А1 и далее через регулятор громкости R3 поступает на УНЧ на микросхеме А2 типа LM386.
На выходе УНЧ включен динамик В1 от карманного приемника.
Для намотки контурных катушек входного контура и гетеродинного используются ферритовые кольца диаметром 7 мм из феррита 100 НН.
Катушка L1 содержит 13 витков с отводом от 3-го витка провода ПЭВ 0,23.
Катушка L2 содержит 16 витков провода ПЭВ 0,23.
Это данные для диапазона 40 метров.
Вместо пьезофильтра на 455 кГц вполне можно использовать и на 465 кГц (диапазона подстройки контура Т1 хватит).
Контур Т1 - готовый стандартный контур ПЧ от импортного транзисторного приемника с AM -диапазоном и ПЧ 455 кГц. Он с катушкой связи и отводом от контурной.
В процессе налаживания оптимальный режим демодуляции выставляется подстройкой контура Т1 и подгонкой режима работы транзистора VT1 резистором R1.

Наверное интересно сделать радиоприемник своими руками, и если вы замахнётесь сразу на короткие волны, то минуете создание длинно - средневолновых приёмных устройств. Пусть он уступит по параметрам фабричным, но главное начать! Последующие радиоприемники, собранные вами без сомнений будут гораздо лучше.

Какую схему стоит выбрать для начинающего радиолюбителя? Супергетеродин слишком сложен, и навряд-ли стоит стартовать, начиная с его постройки. Приемник прямого усиления гораздо проще, но у него для, коротких волн, избирательность маловата.

Простое приемное устройство стоит делать одноконтурным, потому, как два контура единовременно перестраивать, довольно сложно - здесь необходимо использование многосекционных переменных конденсаторов, и много времени придётся затратить для сопряжения настроек.

Полоса пропускания, даже если схема КВ приемника многоконтурная, все равно останется довольно широкой. Для колебательного контура основным показателем остается его добротность, и она зависит в основном от качества резонансного контура, главным образом катушки, и ее сложно изготовить с добротностью более 100-200.

В этом случае, скажем, при приёме десяти - мегагерцового диапазона, полоса пропускания будет около 50 кГц. Это очень много - сетка частот радиостанций на коротких волнах регламентируется в пределах 5 кГц, и принимать десять станций одновременно - неинтересно. Есть выход, - при помощи регенерации повышать добротность контура.

Cхема приемника коротковолнового диапазона

Описание работы схемы КВ приемника

Представленная схема приемника состоит из нескольких каскадов. Первый каскад реализован на транзисторе VT1, который работает в так «барьерном» режиме,- потенциалы базы и коллектора равны. Здесь коллектор по постоянному току соединен через колебательный контур с общим проводом. Транзистор запитан на эмиттер через R1 и R2. В этом режиме кремниевые высокочастотные транзисторы могут усиливать сигналы в амплитуду до десятой доли вольта.

Колебательный контур выполнен из катушки L1 и конденсаторов С2, С3. Антенна связывается с контуром через С1 (для того, чтобы уменьшить ее влияние на частоту настройки). Включением небольшой части катушки (треть-четверть) достигается обратная связь в цепи базы. Схема каскада сходна со схемой генератора (схема Хартли). Но регулируя ток резистором R1, устанавливается режим, при котором возбуждения еще нет, но регенеративное усиление принятых антенной сигналов уже происходит.

Здесь же модулированные сигналы радиостанций детектируются. Через С5, сигнал звуковой частоты передаётся для дальнейшего усиления. С4 замыкает ток высокой частоты на общий провод.

Схема КВ приемника дополнена усилителем звуковой частоты, выполненного на VT2 и VT3 с непосредственной связью.

Наш первый FM-приемник был разработан в 1991г. Прототипом стал “красный” приемник от аппаратуры Signal производства ГДР (это была вторая модификация приемника, названная так по цвету корпуса). Микросхемы A244D и A225D мы заменили на К174ХА2 и К174ХА6, задействовав встроенный в ХА6 шумоподавитель. Пьезофильтр был заменен на LC-ФСС. Были разработаны гибридные интегральные микросборки формирователя и low drop стабилизатора напряжения, изготовленные по тонкопленочной технологии. В результате получилось весьма ударопрочное изделие, выдерживающее (в отличие от прототипа) вибрацию и имеющее неплохую чувствительность и избирательность. Кроме того, удалось избавиться от дергания машинок при выключенном передатчике. C этим приемником МС СССР И.А.Марченко в 1992 г. “налетал” Чемпиона Украины по кроссовым планерам (F3B). Краткий обзор по комплекту аппаратуры ИГВА был напечатан в специализированном японском журнале “Radio Control Technique” (№6 за 1994 г., стр. 310).

До 1995 года делались попытки применить микросхемы К174ПС1 и К174УР3 (позже К174УР7), но устойчивых положительных результатов они не дали. Та же участь постигла и К174ХА26. Зато в 1995 г. микросхема МС3361ВР. практически сразу “попала” в наше устройство и заняла в нем место базового кристалла вплоть до 2000 г. Из пользователей приемников этой серии нам приятно отметить С.Н.Мякишева - радиокопии (F4C) , 1997 г. – 3 место, 1998 г. – 2 место, 1999 г. – 3 место на Чемпионате Украины и А.Квитка – радиогонка (F3D-3,5) 2000г. – 1 место на Кубке Украины.

В 1998 г. был собран пробный вариант приемника на микросхеме МС3372, но из-за высокой цены, ее применение было отложено до лучших времен (они пока так и не наступили).

С 2002 г., после некоторого перерыва, мы перешли на МС3371. Эта микросхема имеет максимальную функциональность при терпимой цене.

Изрядно позанимавшись ремонтом импортной RC-аппаратуры, нам удалось собрать обширный материал по схемотехнике приемников, в том числе на легендарной паре S042P/S041P, а впоследствии и на TA7761. К сожалению, эти микросхемы оказались для нас недосягаемы, если не считать аналог S042P - К174ПС1. Потрошением импортной аппаратуры мы периодически грешим и сейчас – надо же знать, как далеко вперед ушел от нас научно-технический прогресс в… Китае.

Описание схемы

Предлагаемая схема максимально упрощена, имеет всего 2 точки настройки и вполне пригодна для сборки в домашних условиях. Прототипом для нее является приемник IGVA R-FM-5HL на частоту 40 МГц с одинарным преобразованием частоты. Изделие рассчитано на совместную работу с любым FM-передатчиком аппаратуры HITEC на соответствующий частотный диапазон и кварцами от этой же аппаратуры с одинарным преобразованием частоты (single conversion). В условия эфира Москвы с передатчиком HITEC ECLIPSE 7 схема обеспечивает устойчивую дальность связи по земле – 250 м, по воздуху – в пределах прямой видимости для модели с размахом крыла 1 м.

Антенна (провод сечением 0,12…0,2 мм2 и длиной 900…1100 мм) через разделительный конденсатор С1 подключена ко входному контуру L1C2 (первая регулировочная точка), который обеспечивает настройку по высокой частоте (в нашем случае 40 МГц). Со вторичной обмотки L1 высокочастотный сигнал через разделительный конденсатор С3 поступает на вход УВЧ – вывод 16 МС3371. Такая схема входного каскада является классической для FM-приемников 80-х годов. С середины 80-х (с ужесточением эфирных условий) практически все фирмы перешли к использованию дросселя в антенной цепи. Первый вариант менее капризен в настройке, дешевле и по нашему практическому опыту ничем не хуже.

В приемнике задействован внутренний гетеродин МС3371. К выводу 1 микросхемы подключается сменный кварцевый резонатор ZQ1 на соответствующий частотный канал. К выводу 2 микросхемы через разделительный конденсатор С5 подключен низкодобротный согласующий контур L2C6. В целом данное схемное решение соответствует описанию на МС3371.

Высокочастотные сигналы с УВЧ и гетеродина поступают на внутренний смеситель МС3371. С выхода смесителя (вывод 3) сигнал с промежуточной частотой 455 кГц поступает на узкополосный пьезокерамический фильтр ZQ2. Отфильтрованный сигнал ПЧ подается на вход усилителя-ограничителя ПЧ микросхемы (вывод 5). К выводам 6 и 7 подключены блокировочные конденсаторы С7 и С8. Обвязка УПЧ полностью соответствует описанию на МС3371.

Усиленный сигнал ПЧ поступает на внутренний демодулятор. Для выделения “полезной” НЧ составляющей используется керамический резонатор (дискриминатор) ZQ3, подключенный к выводу 8 МС3371 и зашунтированный резистором R1. Применение керамического резонатора вместо LC-контура позволяет убрать одну “лишнюю” настроечную точку, что существенно для любительской конструкции. Сведения о правомерности такой замены приводятся в информационных материалах фирмы MURATA.

После усилителя НЧ сигнал поступает на вывод 9 микросхемы. Высокочастотная составляющая убирается фильтром R3C10. “Очищенный” НЧ сигнал через разделительную цепочку C11R4 поступает на вход внутреннего операционного усилителя МС3371 (вывод 10), включенного по схеме компаратора. Смещение компаратора осуществляется резистором R5 (вторая настроечная точка). Сформированный информационный сигнал с выхода операционного усилителя (вывод 11) через резистор R6 подается на вход С микросхемы CD4015 (вывод 1). К этой же точке подключен вывод 14 МС3371.

Основное преимущество применения МС3371 заключается в чрезвычайно простой реализации схемы шумоподавителя. Такая возможность рассматривается в тексте описания МС3371, хотя сама схема не приведена. Для этого используется выход RSSI - измерителя интенсивности радиочастотного сигнала (вывод 13). Увеличение номинала резистора R2 по сравнению с типовым (типовое значение по описанию - 51 кОм), дает возможность поднять напряжение на выводе 13 до уровня, позволяющего управлять работой внутреннего ключа МС3371. Для этого выход RSSI (вывод 13) и управляющий вход ключа (вывод 12) МС3371 соединены между собой. При высоком уровне входного сигнала выход ключа МС3371 (вывод 14) находится в высокоимпедансном состоянии и не влияет на прохождение информационного сигнала на вход CD4015. При недостаточном уровне входного сигнала внутренний ключ замыкает вывод 14 на “землю” и блокирует прохождение шума с выхода МС3371 на вход CD4015. Это позволяет избежать самопроизвольного срабатывания рулевых машинок при выключенном передатчике (если эфир канала чист), либо по отработке машинок дает возможность определить наличие и интенсивность радиочастотной помехи на данном канале.

“Обнуление” регистров CD4015 для формирования правильной последовательности канальных импульсов осуществляется схемой синхронизации R7R8VT1R9C12. Синхроимпульс с коллектора VT1 поступает на вход D CD4015 (вывод 15). Далее CD4015 осуществляет “раздачу” последовательности импульсов по канальным выходам с первого по четвертый (выводы 13, 12, 11 и 2 соответственно). При желании число каналов можно увеличить до семи, но плату при этом придется переделать.

Детали и замены

Все неэлектролитические конденсаторы – импортные керамические с базой 5 мм. Допустимая замена - К10-17Б. Кроме номиналов, для конденсаторов приведены значения ТКЕ (температурного коэффициента ёмкости). Это существенно для нормальной работы схемы во всем температурном диапазоне эксплуатации приемника.

Электролитические конденсаторы - импортные низкопрофильные. Допустимая замена - К 50–35 (мини). Конденсатор С12 – танталовый. Возможна замена на керамику X7R.

Резисторы типа С1-4 0,125 Вт (0,062 Вт), либо аналогичные импортные.

Дроссели – импортные типа ЕС24.

Транзистор VT1 типа 2SC945. В соответствии с расположением выводов (Э-К-Б) его можно заменить на КТ315Г с коэффициентом усиления по току 200 и более (иногда нам такие встречались).

Микросхему CD4015 можно заменить отечественной К561ИР2.

Пьезофильтр MEC CF455HT можно заменить на LT455G, при этом ухудшение параметров будет практически не заметно.

Керамический резонатор – любой на 455 кГц для ТВ пультов ДУ. Возможна замена на LC-контур (455 кГц). Это упростит стыковку приемника с другими аппаратурами и кварцами, но при этом появится третья точка настройки и потребуется изменение рисунка печатной платы. В этом случае, номинал шунтирующего резистора R1 следует увеличить до 15…22 кОм.

Микросхему МС3371Р можно заменить на МС3361ВР либо КА3361 (применение МС3361СР - нежелательно). При этом следует перерезать дорожку на плате между 12 и 13 выводами данной микросхемы. Резистор R6 следует заменить перемычкой, вывод 14 микросхемы не впаивать (обрезать или отформовать соответствующим образом). Резистор R2 и конденсатор С9 из схемы следует исключить. Естественно, шумоподавитель при этом “исчезает”, зато сам приемник становится проще и существенно дешевле.

Разъем под кварц – гнезда от разъема типа ГРПМ2 или аналогичного.

Разъемы под серво – PLS-40 (стандарт для RC-приемников).

Катушку L1 следует мотать на конструктиве ВЧ контура импортного производства. Посадочный размер 7 х 7 мм, высота 11,5 мм (см. фото). Каркас – секционированный из полиэтилена, в верхней части экрана вклеен ферритовый горшок (без резьбы). Есть подстроечный ферритовый сердечник. Первичная обмотка – 6 витков (3 верхние секции каркаса по 2 витка), вторичная обмотка – 2 витка (четвертая секция каркаса сверху). Вид намотанной катушки показан на рис.2. Если повезет, можно найти конструктив высотой 8 мм. Также возможно применение отечественного конструктива типа КВП.

Сборка и настройка

Для сборки и настройки потребуются: паяльник (до 25 Вт), цифровой мультиметр и осциллограф (хотя бы любительский ОМЛ-2М). Без осциллографа браться за настройку – дело бесперспективное, хотя если Вам везло в лотерею…

Плата – односторонняя, делается при помощи “лазерной” технологии, которая неоднократно обсуждалась на Форуме. Размер платы – 47,5 х 30 мм. Вид платы со стороны дорожек показан на рис.3.

Монтаж платы доступен радиолюбителю средней квалификации. Рекомендуемая последовательность сборки: перемычки под микросхемами, разъемы, резисторы, за исключением R5, дроссели, конденсаторы, транзистор, микросхемы, пьезофильтр и резонатор, катушка. Катушка - самый высокий элемент приемника, поэтому если Вы впаяете ее раньше, она будет мешать при распайке остальных элементов. Перед сборкой следует отформовать или обрезать выводы 5 и 10 микросхемы CD4015, поскольку отверстия под них в плате отсутствуют. Вид платы со стороны деталей показан на рис. 4.

Для облегчения доступа к точкам пайки жало паяльника следует заточить пирамидкой (угол? 30 ?). Флюс – спирто-канифольный. Припой - импортный, легкоплавкий, с флюсом, в крайнем случае – ПОС-61 с канифолью. До сборки приемник показан на рис.5а, а после сборки – на рис.5б. В нашем случае эти два фото разделяют два часа.

Первым делом контролируется качество паек, ибо в электронике есть всего два вида дефектов: либо нет контакта там, где он должен быть, либо есть контакт там, где его быть не должно. Если с пайками дело обстоит благополучно, к любому серворазъему подключается бортовой аккумулятор (4,8 В). Правильно собранная схема начинает работать сра-а-а-а..., а дым откуда!? Ладно, шутки в сторону, проверяем напряжение на выходе стабилизатора. Если оно равно 3,2…3,4 В, можно приступать к настройке. Не лишним будет замерить и потребляемый приемником ток. Обычно он не превышает 7 мА.

Настройка осуществляется на ослабленном сигнале передатчика. Мы знаем четыре способа его ослабления (возможно, Вы придумаете еще и поделитесь с нами).

  1. Передатчик с выдвинутой антенной вместе с помощником медленно удаляется на те самые желанные 250 м – самый безвредный для передатчика вариант (затраты только на пиво помощнику, если Вы уверены, что он вернется с передатчиком обратно). Помощник удаляется медленно потому, что настройщик в это время крутит сердечник катушки и командует, когда помощнику следует остановиться или продолжить идти дальше.
  2. Передатчик со сложенной антенной также медленно удаляется на 30 м и включается кратковременно (опять же пиво помощнику, если будет вовремя выключать передатчик), на всякий случай возьмите с собой бейсбольную биту – пригодится, если выяснится, что помощник оказался нерасторопным.
  3. В самом передатчике разрывается связь между задающим генератором и предоконечным каскадом (выпаивается межкаскадный конденсатор), либо выпаивается эмиттерный резистор в предоконечном каскаде – требует определенных навыков, но позволяет ограничить испытательное пространство размерами письменного стола и существенно сэкономить на пиве.
  4. Делается и настраивается специальный пробник, состоящий из шифратора передатчика на 2…7 каналов и задающего ВЧ генератора – требует еще более определенных навыков, размеры стола теже.

Настройка приемного тракта производится вращением ферритового подстроечного сердечника катушки L1. В контрольной точке КТ1 нужно добиться осциллограммы соответствующего вида (см. рис.6а).

Настройка отсечки компаратора осуществляется подбором резистора R5. Указанный резистор заменяется последовательной цепочкой из постоянного резистора номиналом 220…330 кОм и подстроечного резистора номиналом 1,5…2,2 МОм. Вращением подстроечника требуется получить в контрольной точке КТ2 импульсы шириной 0,3…0,4 мс (см.рис.6б). После этого цепочка выпаивается, замеряется и заменяется соответствующим постоянным резистором.

Дополнительно следует убедиться в том, что осциллограмма в контрольной точке КТ3 соответствует рис.6в., а в контрольной точке КТ4 (сервоимпульс) соответствует рис.6г.

Настройка обычно занимает от 15 минут до одной недели. Ниже даны осциллограммы в контрольных точках.

Заключение

Мы уверены в том, что придумали для Вас отличное развлечение. А может быть кому-то сборка таких приёмничков поможет поддержать штаны, как нам в свое время, кому-то скрасит длинную полярную ночь в промежутках между сеансами северного сияния, а кто-то забудет протянуть руку к стакану (чур меня). Но главное, эта схема не догма, а всего лишь повод к дальнейшему творчеству на ниве RC дизайна.

Теория нами практически не затрагивалась, все желающие могут с ней ознакомиться в книгах классика – Карла Марк…, тьфу ты, конечно же, Гюнтера Миля. Как “не читали”?! Марш в библиотеку!

Задача догнать и перегнать Футабу в этой статье нами также не ставилась, наверное, поэтому она так и осталась невыполненной.

Да, и еще, желание сделать приемник на 35 МГц может быть удовлетворено простой заменой номинала конденсатора С2 с 27 пФ на 39 пФ.

Схема простого КВ приемника наблюдателя на любой радиолюбительский диапазон

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Сегодня мы рассмотрим очень простую, и в тоже время обеспечивающую неплохие характеристики схему – КВ приемник наблюдателя – коротковолновика .
Схема разработана С. Андреевым. Не могу не отметить, что сколько я не встречал в радиолюбительской литературе разработок этого автора, все они были оригинальны, просты, с прекрасными характеристиками и самое главное – доступны для повторения начинающими радиолюбителями.
Первый шаг радиолюбителя в стихию обычно всегда начинается с наблюдения за работой других радиолюбителей в эфире. Мало знать теорию радиолюбительской связи. Только прослушивая любительский эфир, вникая в азы и принципы радиосвязи, радиолюбитель может получить практические навыки в проведении любительской радиосвязи. Эта схема как раз и предназначена для тех кто хочет сделать свои первые шаги в любительской связи.

Представленная схема приемника радиолюбителя – коротковолновика очень проста, выполнена на самой доступной элементной базе, несложная в настройке и в тоже время обеспечивающая хорошие характеристики. Естественно, что в силу своей простоты, эта схема не обладает “сногсшибательными” возможностями, но (к примеру чувствительность приемника около 8 микровольт) позволит начинающему радиолюбителю комфортно изучать принципы радиосвязи, особенно в 160 метровом диапазоне:

Приемник, в принципе, может работать в любом радиолюбительском диапазоне – все зависит от параметров входного и гетеродинного контуров. Автор этой схемы испытывал работу приемника только для диапазонов 160, 80 и 40 метров.
На какой диапазон лучше собрать данный приемник. Чтобы это определить, надо учесть в каком районе вы проживаете и исходить из характеристик любительских диапазонов.
()

Приемник построен по схеме прямого преобразования. Он принимает телеграфные и телефонные любительские станции – CW и SSB.

Антенна. Работает приемник на несогласованную антенну в виде отрезка монтажного провода, который можно протянуть под потолком комнаты по диагонали. Для заземления подойдет труба водопроводной или отопительной системы дома, которая подключается к клемме Х4. Снижение антенны подключается к клемме Х1.

Принцип работы. Входной сигнал выделяется контуром L1-C1, который настроен на середину принимаемого диапазона. Затем сигнал поступает на смеситель, выполненный на 2-х транзисторах VT1 и VT2, в диодном включении, включенных встречно-параллельно.
Напряжение гетеродина, выполненного на транзисторе VT5, подается на смеситель через конденсатор С2. Гетеродин работает на частоте в два раза ниже частоты входного сигнала. На выходе смесителя, в точке подключения С2, образуется продукт преобразования – сигнал разности входной частоты и удвоенной частоты гетеродина. Так как величина этого сигнала не должна быть более трех килогерц (в диапазон до 3-х килогерц укладывается “человеческий голос”), то после смесителя включен ФНЧ на дросселе L2 и конденсаторе С3, подавляющий сигнал частотой выше 3-х килогерц, благодаря чему достигается высокая избирательность приемника и возможность приема CW и SSB. При этом, сигналы АМ и FM практически не принимаются, но это и не очень важно, потому, что радиолюбители в основном используют CW и SSB.
Выделенный НЧ сигнал поступает на двухкаскадный усилитель низкой частоты на транзисторах VT3 и VT4, на выходе которого включаются высокоомные электромагнитные телефоны типа ТОН-2. Если у вас есть только низкоомные телефоны, то их можно подключать через переходной трансформатор, к примеру от радиоточки. Кроме того, если параллельно С7 включить резистор на 1-2 кОм, то сигнал с коллектора VT4 через конденсатор емкостью 0,1-10 мкФ можно подать на вход любого УНЧ.
Напряжение питания гетеродина стабилизировано стабилитроном VD1.

Детали. В приемнике можно использовать разные переменные конденсаторы: 10-495, 5-240, 7-180 пикофарад, желательно, чтобы они были с воздушным диэлектриком, но подойдут и с твердым.
Для намотки контурных катушек (L1 и L3) используются каркасы диаметром 8 мм с резьбовыми подстроечными сердечниками из карбонильного железа (каркасы от контуров ПЧ старых ламповых или лампово-полупроводниковых телевизоров). Каркасы разбираются, разматываются и от них спиливается цилиндрическая часть длиной 30 мм. Каркасы устанавливаются в отверстия платы и фиксируются эпоксидным клеем. Катушка L2 намотана на ферритовом кольце диаметром 10-20 мм и содержит 200 витков провода ПЭВ-0,12 намотанных внавал, но равномерно. Катушку L2 можно также намотать на сердечнике СБ а затем поместить внутрь броневых чашек СБ склеив их эпоксидным клеем.
Схематическое изображение крепления катушек L1, L2 и L3 на плате:


Конденсаторы С1, С8, С9, С11, С12, С13 должны быть керамическими, трубчатыми или дисковыми.
Намоточные данные катушек L1 и L3 (провод ПЭВ 0,12) номиналы конденсаторов С1, С8 и С9 для разных диапазонов и используемых переменных конденсаторах:


Печатная плата сделана из фольгированного стеклотекстолита. Расположение печатных дорожек – с одной стороны:

Налаживание. Низкочастотный усилитель приемника при исправных деталях и безошибочном монтаже в налаживании не нуждается, так-как режимы работы транзисторов VT3 и VT4 устанавливаются автоматически.
Основное налаживание приемника – налаживание гетеродина.
Сначала нужно проверить наличие генерации по наличию ВЧ напряжения на отводе катушки L3. Ток коллектора VT5 должен быть в пределах 1,5-3 мА (устанавливается резистором R4). Наличие генерации можно проверить по изменению этого тока при прикосновении руками к гетеродинному контуру.
Подстройкой гетеродинного контура надо обеспечить нужное перекрытие гетеродина по частоте, частота гетеродина должна перестраивается в пределах на диапазонах:
– 160 метров – 0,9-0,99 МГц
– 80 метров – 1,7-1,85 МГц
– 40 метров – 3,5-3,6 МГц
Проще всего это сделать, измеряя частоту на отводе катушки L3 при помощи частотомера, способного измерять частоту до 4 МГц. Но можно воспользоваться и резонансным волномером или генератором ВЧ (методом биений).
Если вы пользуетесь генератором ВЧ, то можно одновременно настроить и входной контур. Подайте на вход приемника сигнал от ГВЧ (расположите провод, подключенный к Х1 рядом с выходным кабелем генератора). Генератор ВЧ надо перестраивать в пределах частот в два раза больших, чем указано выше (например, на диапазоне 160 метров – 1,8-1,98 МГц), а контур гетеродина подстроить так, чтобы при соответствующем положении конденсатора С10 в телефонах прослушивался звук частотой 0,5-1 кГц. Затем, настройте генератор на середину диапазона, настройте на нее приемник, и подстройте контур L1-C1 по максимальной чувствительности приемника. Также по генератору можно откалибровать шкалу приемника.
При отсутствии генератора ВЧ входной контур можно настроить принимая сигнал радиолюбительской станции работающей как можно ближе к середине диапазона.
В процессе настройки контуров может потребоваться корректировка числа витков катушек L1 и L3. конденсаторов С1, С9.



Понравилась статья? Поделитесь с друзьями!