Схема недельный программируемый таймер своими руками. Таймер включения и выключения света своими руками. Многофункциональные релейные устройства

Реле времени сегодня является электронным устройством, которое устанавливается на любые бытовые приборы, для которых имеет значение отсчет времени. Поэтому большой интерес для любителей электроники является самостоятельная сборка реле времени.

При этом, выдержки времени нужны не только для включения и выключения приборов, но также и для мощности нагрева, как это предусматривают микроволновые печи. В зависимости от времени включения происходит ее нагрев.

Устройство

Для того, чтобы понять, как устроено электронное реле, полезно вспомнить старые механические регуляторы времени. Скажем, у прежних стиральных машин поворот вынесенной на корпус ручки включал исполнительный механизм. Одновременно запускалась выдержка. По прошествии заданного времени исполнительный механизм отключался. По такому алгоритму работают любые включатели времени либо таймеры, даже находящиеся в микроконтроллере (МК).

Хотя сегодня, в век электроники, существуют очень много электронных часовых механизмов и реле, то возникает вопрос о необходимости изготовления механизма, регулирующего время своими руками. Ответить на него очень просто. Часто дома приходится делать что-то, где потребуются дозированные временные границы. Поэтому простые механизмы регулирования временивозможно собрать и самому, своими руками.

Простая радиосхема

Приведем одну из наиболее простых схем. Для наглядности приводится схема и изображение печатной платы реле на 12 в.

Представим, что кнопка sb1 выключена. На обкладке конденсатора с1 сейчас напряжения нет. В результате этого, транзисторы закрыты и в обмотках реле ток отсутствует. После включения кнопки происходит заряд емкости с1, открывающий транзистор vt1, к базе которого прикладывается отрицательное напряжение. В итоге будет открыт второй транзистор и сработает реле k1.

Если отпустить кнопку, то произойдет разряд конденсатора по цепи: r2-r3 эмиттер vt1-r4.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Реле остается включенным, до того момента, когда напряжение на контактах емкости не снизится до 2-3 вольт. На протяжении этого времени соединения реле будут пребывать в одном из положений: либо включенном, либо отключенном.

Временная выдержка регулируется в пределах, которые зависят от емкости с1 и суммы сопротивлений подключенных к ней цепей. Задержка по длительности может регулироваться с помощью сопротивления r3. Получение более увеличенных пределов выдержек возможно с помощь увеличения номиналов с1 и r3. Схема простая, микросхемы отсутствуют.

Если нужно изготовить реле времени на 220 в, то можно воспользоваться следующей схемой. Здесь представлена очень простая схема подключения.

С включением соединенияs1 емкость с1 будет заряжаться, на управляющую ножку тиристора подается плюс, тиристор откроется и при этом загорится последовательно соединенная в цепь лампа L1. Пока конденсатор заряжается, по нему перестает проходить ток. Соответственно тиристор закрывается и происходит выключение лампы.

При выключении контакта s1 емкость разряжается посредством резистора r1 и реле времени возвращается в первоначальное положение. Продолжительность горения лампы будет около 4 -7 секунд. Для того, чтобы увеличить задержку, нужно изменить емкость конденсатора. Такое реле можно поставить для включения освещения на лестничной площадке или подключить к АВР.

В данной схеме основной упор сделан на микросхему D1. Подобная микросхема может работать с различными устройствами на 12 в.Вся же схема, собранная своими руками, тоже имеет различное применение. Например, если ее подключить к контактору, то можно дистанционно управлять электроприборами, как пускателем. Подобные контакторы, управляемые слабыми токами, могут использоваться в различных автоматических системах, например, открывать ворота гаража или включать в нем освещение.

На одном контакторе возможно своими руками собрать схему АВР. Такие схемы АВР устанавливаются для включения и *выключения устройств телемеханики и уличного освещения. Автоматическое включение резерва (АВР) необходимо для быстродействия при отключении питания. Система АВР содержит в себе часовой механизм, который через минимальную задержку времени отключает цепь силового трансформатора. Обычно такие АВР, использующие именно часовые механизмы работают на электрических подстанциях.

Многофункциональные релейные устройства

Своими руками можно собрать и многофункциональные релейные устройства, которые могут быть применены в домашнем хозяйстве. Ими можно организовать включение и выключение отопления, вентиляции, освещения. Многофункциональные устройства могут работать с любыми заданными промежутками времени. Задержку можно настроить в интервале от 0,1 сек и до 24 суток, при этом напряжение питание может быть от 12 до 220в переменного или постоянного тока.

Главными функциями работы реле в таких случаях считаются:

  • Задержка выключения, происходящую за счет переключающихся контактов,
  • Задержка срабатывания устройства.

Для обеспечения логики работы электрических устройств часто необходимо учитывать какой-то заданный временной промежуток. Для этого в цепь включаются различные таймеры и реле времени. Сегодня большинство таких приборов можно приобрести в интернете, но при желании вы можете изготовить реле времени своими руками. Тем более что подобная самоделка всегда найдет применение в решении каких-либо бытовых задач.

Несколько слов о разновидностях

Электронные таймеры для установки задержки включения и отключения используются в микроволновках, стиральных машинах, системах обогрева, для обустройства умного дома и т.д. основывается на установке временного интервала для задержки в работе электрической сети. На практике такое устройство может иметь различный способ замедления:

  • электромагнитное;
Рис. 1: электромагнитные реле времени
  • пневматическое;
  • с часовым механизмом;

Рис. 2. С часовым механизмом
  • моторные;
  • электронные.

Из-за сложности настройки и дефицита определенных элементов далеко не все реле времени можно собрать своими руками. Наиболее простым вариантом для изготовления и рассмотрения являются электронные модели, так как достать комплектующие для них сегодня можно как из старого оборудования, так и с любого магазина радиодеталей.

Электромеханические реле и другие варианты доступны в случае наличия специфических комплектующих, которые далеко не всегда можно найти в свободной продаже.

Что понадобится для изготовления?

В зависимости от выбранной модели процесс может оказаться как простым, так довольно трудоемким. Поэтому всем необходимым лучше запастись заранее, чтобы не останавливаться на половине проделанной работы.

Для сборки реле времени вам понадобится:

  • набор радиодеталей – в каждом конкретном примере самодельного реле их перечень будет отличаться, но основная номенклатура останется неизменной ( , микросхемы, промежуточные реле или переключатели, блоки питания или понижающие трансформаторы, катушки и т.д.);
  • основание для набора элементов – печатная плата, диэлектрическая поверхность или каркас, также выбираются исходя из местных условий;

Рис. 3. Печатная плата
  • паяльник, припой и другие приспособления для соединения элементов цепи.
  • корпус – для защиты элементов реле от различных механический воздействий, попадания пыли, влаги и засорителей;
  • блок управления или программирования – если вы планируете сделать регулируемую задержку.

В некоторых ситуациях вышеперечисленные части можно позаимствовать из старых электронных приборов, если он вам подходят, в противном случае их нужно приобрести. С конкретным перечнем вы сможете определиться после того, как выберете конкретную модель, которую хотите изготовить.

Создаем реле времени на 12 и 220 Вольт

В зависимости от величины питающего напряжения, к которому подключается нагрузка, определяется и уровень потенциала, под которым будут находиться элементы реле времени. На практике для создания временных задержек применяются как работающие от сети 220В, так и от безопасного низкого 12В.

Первый вариант считается более простым, поскольку работа осуществляется напрямую от сети. Также схема на 220 В актуальна для питания особо мощной нагрузки – двигателей или бытовых приборов.

Идея 1. На диодах

Рассмотрим вариант простейшего логического элемента для работы в цепи 220В.


Рис. 4. Схема реле времени на 220В

Здесь включение происходит при нажатии кнопки S1, после чего напряжение подается на диодный мост. С моста потенциал переходит на времязадающий элемент, состоящий из резисторов и конденсатора. В процессе накоплении заряда тиристор VS1 откроется, и ток протечет через лампу освещения L1. Когда емкость конденсатора полностью зарядится, тиристор перейдет в закрытое состояние, после чего срабатывает реле и лампа гореть перестанет.

Максимальную выдержку здесь можно установить в несколько десятков секунд, так как ее величина будет задаваться сопротивлением резистора и емкостью. Существенным недостатком является то, что эта схема несет угрозу человеческой жизни при поражении электротоком. Поэтому далее рассмотрим пример изготовления реле времени на 12В.

Идея 2. На транзисторах

Принцип действия такого реле времени основывается на использовании полупроводниковых приборов для задачи временного промежутка. На практике могут использоваться схемы как с одним транзистором, так и с большим числом. Наиболее актуальные для самостоятельного изготовления реле времени на двух транзисторах – они характеризуются лучшей стабильностью и управляемостью.

Пример такого электронного устройства приведен на рисунке ниже:


Рис. 5. На транзисторах

Для ее практической реализации вам понадобится обзавестись следующими элементами:

  • резисторами – одним на 100 кОм и тремя на 1 кОм;
  • двумя транзисторами КТ3102Б или идентичными;
  • конденсатором для создания задержки выключения/включения;
  • кнопка для запуска реле времени;
  • промежуточное реле или коммутатор;
  • светодиод для сигнализации состояния;
  • печатная плата для сборки всех деталей.

Принцип работы такого реле времени заключается в подаче напряжения 12 В на емкостной элемент C1. После чего происходит зарядка конденсатора до определенного потенциала, величины которого будет достаточно для открытия транзистора VT1.

Ток заряда для емкостного элемента определяется сопротивлением ветви C1 – R1 – чем больше сопротивление, тем меньше ток, а время накопления заряда больше. Соответственно, для повышения или уменьшения времени включения или выключения нагрузки можно использовать переменный резистор для R1.


Рис. 6. Установить переменный резистор

После разряда емкости на базу транзистора VT1 поступит сигнал открытия, и электрический ток начнет протекать через эмиттер и коллектор, резисторы R2 и R3. Эти номиналы резисторов подбираются для открытия второго транзистора VT2, работающего в режиме электронного ключа на включение основной нагрузки.

Открытый VT2 подает напряжение на обмотку реле K1, сердечник в нем притягивается и производит операции с нагрузкой. Одна из пар контактов электромагнитного реле воздействует своими контактами на цепь питания светодиода, сигнализирующего о состоянии устройства.

Кнопка SB1 в цепи позволяет обнулить заряд конденсатора – это обязательная процедура пере каждым последующим пуском, что составляет определенные трудности, которые решаются установкой микросхем.

Идея 3. На базе микросхем

Это более сложный вариант, чем с использованием транзисторов, но цифровое реле не требует нажатия кнопки для начала нового цикла, они более устойчивы. Циклическое реле позволяет выполнять несколько операций в автоматическом режиме, за счет наличия микросхемы существует источник внутреннего опорного питания, можно значительно увеличить пределы задержки времени.


Рис. 7. На базе микросхемы КР512ПС10

Посмотрите на рисунок, приведенная здесь схема рассчитана на работу в цепи 220 В. Для ее реализации вам понадобятся резисторы разного номинала, указанные на схеме, диодный мост, пара транзисторов, полупроводниковые элементы, конденсаторы, промежуточное реле, микросхема.

Ее принцип действия идентичен с описанным ранее вариантом на двух транзисторах с той разницей, что в цепи управления временной задержкой появляется микросхема. С помощью которой заряд конденсатора может накапливаться в десятки раз дольше, соответственно, получается возможность увеличения времени задержки.

Процесс сборки не представляет особых трудностей для опытных радиолюбителей, имеющих навыки пайки и чтения схем. Однако для новичков такое реле времени может представлять определенную сложность, поэтому им следует внимательно относиться к процессу.

Идея 4. На базе таймера NE555

Этот вариант также относится к электронным реле, в котором задержка времени устанавливается при помощи популярного таймера NE555. С его помощью вы сможете собрать таймер, который оперирует коммутационными процессами, как на включение, так и на отключение.


Рис. 8. На базе таймера NE555

Как видите на схеме, таймер выполняет роль управляющего ключа, разрешающего выдачу электрического сигнала либо напрямую к прибору, либо через оперирующий орган – катушку реле. Когда времязадающая цепочка из двух резисторов и конденсатора достигнет насыщения, таймер выдаст на выход реле времени управляющий сигнал, который притянет к катушке прибора сердечник и замкнет контакты. К выходной катушке параллельно подключается светодиод, сигнализирующий о состоянии реле.

Практическая реализация этой схемы также требует определенных навыков и знаний в пайке радиодеталей и изготовлении печатных плат.

Следует отметить, что таймер и микросхема хоть и дают более устойчивую работу, но не могут похвастаться способностью к программированию. Современные цикличные таймеры на микроконтроллерах представляют неограниченные функции в формировании логики работы, но собрать их в домашних условиях достаточно сложно.

Видео идеи


Схема таймера на счетчике К561ИЕ16

Конструкция выполнена только на одной микросхеме К561ИЕ16 . Так как, для его правильной работы нужен внешний генератор тактовых импульсов, то в нашем случае мы его заменим простым мигающим светодиодом.

Как только подадим напряжение питание на схему таймера, емкость С1 начнет заряжаться через резистор R2 поэтому на выводе 11 кратковременно появится логическая единица, сбрасывающая счетчик. Транзистор, подсоединенный к выходу счетчика, откроется и включит реле, которое через свои контакты подключит нагрузку.


С мигающего светодиода с частотой 1,4 Гц поступают импульсы на тактовый вход счетчика. C каждым импульсным перепадом идет счет счетчика. Через 256 импульсов или около трех минут, на выводе 12 счетчика появится уровень логической единицы, а транзистор закроется, отключив реле и коммутируемую через его контакты нагрузку. К тому же эта логическая единица проходит на тактовый вход DD, останавливая работу таймера. Время работы таймера можно подобрать путем подключения точки «А» схемы к различным выходам счетчика.

Схема таймера выполнена на микросхеме КР512ПС10 , которая имеет в своем внутреннем составе двоичный счетчик-делитель и мультивибратор. Как и у обычного счетчика эта микросхема имеет коэффициент деления от 2048 до 235929600. Выбор требуемого коэффициента задается путем подачи логических сигналов на входы управления M1, M2, M3, M4, M5.

Для нашей схемы таймера коэффициент деления выбран 1310720. В таймере имеется шесть фиксированных временных интервалов: пол часа, полтора часа, три часа, шесть часов, двенадцать часов и сутки часа. Частота работы встроенного мультивибратора определяется номиналами резистора R2 и конденсатора C2 . При переключении переключателя SA2 изменяется частота мультивибратора, а проходя через счетчик-делитель и временной интервал.

Схема таймера запускается сразу после включения питания или для сброса таймера можно нажать на тумблер SA1. В исходном состоянии на девятом выходе будет уровень логической единицы а на десятом инверсном выходе соответственно нуля. В результате этого транзистор VT1 подсоединит светодиодную часть оптотиристоров DA1, DA2 . Тиристорная часть имеет встречно-параллельное включение, это позволяет регулировать переменное напряжение.

По завершению отсчета времени на девятом выходе установится ноль и отключит нагрузку. А на выходе 10 появится единица, которая остановит счетчик.

Запуск схемы таймера осуществляется при нажатии одной из трех кнопок с фиксацией временного интервала, при этом он начинает обратный отсчет. Параллельно с нажатием кнопки загорается светодиод соответствующий кнопки.


По истечению временного интервала таймер издает звуковой сигнал. Последующее нажатие отключит схему. Временные промежутки изменяются номиналами радиокомпонентов R2, R3, R4 и C1 .

Схема таймера , который обеспечивает задержку выключения, показана на первом рисунке Здесь транзистор с каналом р- типа (2) включён в цепь питания нагрузки, а транзистор с каналом п-типа (1) им управляет.

Схема таймера работает следующим образом. В исходном состоянии конденсатор С1 разряжен, оба транзистора закрыты и нагрузка обесточена. При кратковременном нажатии на кнопку Пуск затвор второго транзистора соединяется с общим проводом, напряжение между его истоком и затвором становится равным напряжению питания, он мгновенно открывается, подключая нагрузку. Возникший на ней скачок напряжения через конденсатор С1 поступает на затвор первого транзистора, который также открывается, поэтому затвор второго транзистора останется соединённым с общим проводом и после отпускания кнопки.

По мере зарядки конденсатора С1 через резистор R1 напряжение на нём повышается, а на затворе первого транзистора (относительно общего провода) понижается. Через некоторое время, зависящее в основном от ёмкости конденсатора С1 и сопротивления резистора R1, оно снижается настолько, что транзистор начинает закрываться и напряжение на его стоке повышается. Это приводит к уменьшению напряжения на затворе второго транзистора, поэтому последний также начинает закрываться и напряжение на нагрузке понижается. В результате напряжение на затворе первого транзистора начинает уменьшаться ещё быстрее.

Процесс протекает лавинообразно, и вскоре оба транзистора закрываются, обесточивая нагрузку, конденсатор С1 быстро разряжается через диод VD1 и нагрузку. Устройство снова готово к запуску. Так как полевые транзисторы сборки начинают открываться при напряжении затвор-исток 2,5...3 В, а максимально допустимое напряжение между затвором и истоком - 20 В, то устройство может работать при питающем напряжении от 5 до 20 В (номинальное напряжение конденсатора С1 должно быть на несколько вольт больше питающего). Время задержки выключения зависит не только от параметров элементов С1, R1, но и от напряжения питания. Например, повышение напряжения питания с 5 до 10 В приводит к его увеличению примерно в 1,5 раза (при номиналах элементов, указанных на схеме, оно составило 50 и 75 с соответственно).

Если при закрытых транзисторах напряжение на резисторе R2 окажется более 0,5 В, то его сопротивление необходимо уменьшить. Устройство, обеспечивающее задержку включения, можно собрать по схеме, показанной на рис. 2. Здесь транзисторы сборки включены примерно так же, но напряжение на затвор первого транзистора и конденсатор С1 поступает через резистор R2. В исходном состоянии (после подключения источника питания или после нажатия на кнопку SB1) конденсатор С1 разряжен и оба транзистора закрыты, поэтому нагрузка обесточена. По мере зарядки через резисторы R1 и R2 напряжение на конденсаторе повышается, и когда оно достигает значения примерно 2,5 В, первый транзистор начинает открываться, падение напряжения на резисторе R3 увеличивается и второй транзистор также начинает открываться. Когда напряжение на нагрузке возрастает настолько, что диод VD1 открывается, напряжение на резисторе R1 повышается. Это приводит к тому, что первый транзистор, а за ним и второй открываться быстрее и устройство скачком переключается в открытое состояние, замыкая цепь питания нагрузки

Схема таймера - повторный запуск, для этого необходимо нажать на кнопку и удерживать её в таком состоянии 2...3 с (этого времени достаточно для полной разрядки конденсатора С1). Таймеры монтируют на печатных платах из фольгированного с одной стороны стеклотекстолита, чертежи которых изображены соответственно на рис. 3 и 4. Платы рассчитаны на применение диода серий КД521, КД522 и деталей для поверхностного монтажа (резисторов Р1-12 типоразмера 1206 и танталового оксидного конденсатора). Налаживание устройств сводится в основном к подбору резисторов для получения требуемой выдержки времени.

Описанные устройства предназначены для включения в плюсовой провод питания нагрузки. Однако, поскольку сборка IRF7309 содержит транзисторы с каналом обоих типов, таймеры нетрудно приспособить для включения и в минусовый провод. Для этого транзисторы следует поменять местами и изменить на обратную полярность включения диода и конденсатора (естественно, это потребует и соответствующих изменений в чертежах печатных плат). Следует учесть, что при длинных соединительных проводах или отсутствии в нагрузке конденсаторов возможны наводки на эти провода и неуправляемое включение таймера Чтобы повысить помехоустойчивость, к его выходу надо подключить конденсатор ёмкостью несколько микрофарад с номинальным напряжением не менее напряжения питания.

Схема таймера на пять минут

Если временной интервал больше5 минут, устройство можно перезапустить и продолжать отсчет заново.

После кратковременного замыкания SВ1 начинает заряжаться емкость С1, включенный в коллекторную цепь транзистора VТ1. Напряжение с С1 поступает на усилитель с большим входным сопротивлением на транзисторах VТ2- VТ4 . Его нагрузкой является светодиодный индикатор, включающихся поочередно через минуту.

Конструкция позволяет выбрать один из пяти возможных временных интервалов: 1.5, 3, 6, 12 и 24 часа . Нагрузка подсоединяется к сети переменного тока в момент начала отсчета времени и отключается по завершению отсчета. Временные промежутки задаются с помощью частотного делителя сигналов прямоугольной формы, генерируемых RC- мультивибратором.

Задающий генератор выполнен на логических компонентах DD1.1 и DD1.2 микросхемы К561ЛЕ5 . Частота генерации формируется RC-цепочкой на R1,C1 . Точность хода настраивается по наименьшему временному интервалу, с помощью подбора сопротивления R1 (временно при регулировке его желательно заменить переменным сопротивлением). Для создания необходимых временных диапазонов, импульсы с выхода мультивибратора идут на два счетчика DD2 и DD3, в результате осуществляется деление частоты.

Эти два счетчика - К561ИЕ16 подсоединены последовательно, но для одновременного сброса, выводы обнуления подключены вместе. Сброс происходит при помощи переключателя SA1. Другим тумблером SA2 осуществляется выбор необходимого временного диапазона.


Когда на выходе DD3 возникнет логическая единица, она поступает на вывод 6 DD1.2 в результате чего генерация импульсов мультивибратором заканчивается. Одновременно сигнал логической единицы следует на вход инвертора DD1.3 к выходу которого подсоединен VT1. Когда на выходе DD1.3 появится логический ноль транзистор закрывается и отключает светодиоды оптопар U1 и U2, а это выключает симистора VS1 и подключенную к нему нагрузку.

При сбросе счетчиков, на их выходах устанавливаются нули, в том числе и на выходе, на который установлен переключатель SA2. На входе DD1.3 также подается нуль и соответственно на его выходе единица, что подключает нагрузку к сети . Так же параллельно и на входе 6 DD1.2 установится нулевой уровень, что запустит мультивибратор, и таймер начнет отсчет времени. Питание таймера осуществляется по бестрансформаторной схеме, состоящей из компонентов С2, VD1, VD2 и С3.

Когда тумблер SW1 замкнут конденсатор С1 начинает медленно заряжаться через сопротивление R1, а когда уровень напряжения на нем составит 2/3 от питающего, на это отреагирует триггер IC1. При этом напряжение на третьем выводе снизится до нуля, и цепь с лампочкой разомкнется.

При сопротивление резистора R1 в 10М (0,25 Вт) и емкости C1 47 мкФ x 25 В время работы устройства около 9 с половиной минут, при желание его можно изменить путем регулировки номиналов R1 и C1. Пунктирной линией на рисунке обозначеноо включение дополнительного выключателя, с помощью которого можно включать цепь с лампочкой даже при замкнутом тумблере. Ток покоя конструкции всего 150 мкА. Транзистор BD681 - составной (Дарлингтона) средней мощности. Можно заменить на BD675A/677A/679A.

Это схема таймера на микроконтроллере PIC16F628A позаимствована с хорошего португальского сайта по радиоэлектронике. Микроконтроллер тактируется от внутреннего генератора, который можно считать достаточно точным для данного момента, так как выводы 15 и 16 остаются свободными, то можно использовать внешний кварцевый резонатор для еще большей точности в работе.

Достаточно прост, но иногда способен вызвать восхищение. Если вспомнить старые стиральные машины, которые ласково называли «ведро с моторчиком», то тут действие реле времени было очень наглядно: повернули ручку на несколько делений, внутри что-то начало тикать, и мотор завелся.

Как только указатель ручки доходил до нулевого деления шкалы, стирка заканчивалась. Позднее появились машины с двумя реле времени, - стирка и отжим. В таких машинах реле времени были выполнены в виде металлического цилиндра, в котором был спрятан часовой механизм, а снаружи находились лишь электрические контакты и ручка управления.

Современные стиральные машины - автоматы (с электронным управлением) тоже имеют реле времени, причем как отдельный элемент или деталь разглядеть его на плате управления стало невозможно. Все выдержки времени получаются программно с помощью управляющего микроконтроллера. Если внимательно присмотреться к циклу работы автоматической стиральной машины, то количество выдержек времени просто не поддается учету. Если бы все эти выдержки времени выполнить в виде часового механизма упомянутого выше, то в корпусе стиральной машины просто не хватило бы места.

От часового механизма к электронике

Как получить выдержку времени с помощью МК

Быстродействие современных МК очень велико, до нескольких десятков mips (миллионов операций в секунду). Кажется, не столь давно шла борьба за 1 mips у персональных компьютеров. Теперь даже устаревшие МК, например, семейства 8051 легко выполняют этот 1 mips. Таким образом, на выполнение 1 000 000 операций придется затратить ровно одну секунду.

Вот, казалось бы и готовое решение, как получить задержку времени. Просто одну и ту же операцию выполнить миллион раз. Такое сделать достаточно просто, если эту операцию в программе зациклить. Но вся беда в том, что кроме этой операции, целую секунду МК, делать ничего больше не сможет. Вот тебе и достижение инженерной мысли, вот тебе и mips - ы! А если нужна выдержка в несколько десятков секунд или минут?

Таймер - устройство для подсчета времени

Чтобы такого конфуза не случилось, не грелся просто так процессор, выполняя ненужную команду, которая ничего полезного делать не будет, в МК были встроены таймеры, как правило, по нескольку штук. Если не вдаваться в подробности, то таймер представляет собой двоичный счетчик, который считает импульсы, вырабатываемые специальной схемой внутри МК.

Например, в МК семейства 8051 счетный импульс вырабатывается при выполнении каждой команды, т.е. таймер просто считает количество выполненных машинных команд. А в это время центральный процессор (CPU) спокойно занимается выполнением основной программы.

Предположим, что таймер начал считать (для этого есть команда запуска счетчика) с нулевого значения. Каждый импульс увеличивает содержимое счетчика на единицу и, в конце концов, доходит до максимального значения. После чего содержимое счетчика обнуляется. Вот этот момент носит название «переполнение счетчика». Это как раз и есть окончание выдержки времени (вспомним стиральную машину).

Предположим, что таймер 8 - ми разрядный, тогда с его помощью можно подсчитать значение в пределах 0…255, или переполнение счетчика будет происходить через каждые 256 импульсов. Чтобы выдержку сделать короче достаточно начать счет не с нуля, а с другого значения. Чтобы его получить, достаточно предварительно загрузить в счетчик это значение, а потом запустить счетчик (еще раз вспомним стиральную машину). Вот это предварительно загруженное число и есть угол поворота реле времени.

Такой таймер при частоте выполнения операций 1 mips позволит получить выдержку максимум 255 микросекунд, а ведь надо несколько секунд или даже минут, как же быть?

Оказывается, все достаточно просто. Каждое переполнение таймера это событие, которое вызывает прерывание основной программы. В результате CPU переходит на соответствующую подпрограмму, которая из таких вот крошечных выдержек может сложить любую, хоть до нескольких часов и даже суток.

Подпрограмма обслуживания прерывания, как правило короткая, не более нескольких десятков команд, после чего снова происходит возврат в основную программу, которая продолжает выполняться с того же места. Попробуйте такую выдержку осуществить простым повторением команд, про которое было сказано выше! Хотя, в некоторых случаях приходится поступать именно таким образом.

Для этого в системах команд процессоров существует команда NOP, которая как раз ничего не делает, лишь занимает машинное время. Может использоваться для резервирования памяти, и при создании выдержек времени, только очень коротких, порядка единиц микросекунд.

Да, скажет читатель, как его понесло! От стиральных машин сразу к микроконтроллерам. А что же было между этими крайними точками?

Какие бывают реле времени

Как уже было сказано, основная задача реле времени - получить задержку между входным сигналом и сигналом на выходе. Эту задержку можно сформировать несколькими способами. Реле времени были механические (уже описанное в начале статьи), электромеханические (тоже на основе часового механизма, только пружина заводится электромагнитом), а также с различными демпфирующими устройствами. Примером такого реле может служить пневматическое реле времени, показанное на рисунке 1.

Реле состоит из электромагнитного привода и пневматической приставки. Катушка реле выпускается на рабочие напряжения 12…660В переменного тока (всего 16 номиналов) частотой 50…60Гц. В зависимости от исполнения реле выдержка может начинаться либо при срабатывании, либо при отпускании электромагнитного привода.

Установка времени осуществляется винтом, регулирующим сечение отверстия для выхода воздуха из камеры. Описанные реле времени отличаются не слишком стабильными параметрами, поэтому, там, где это возможно всегда применяются электронные реле времени. В настоящее время такие реле, как механические, так и пневматические можно, пожалуй, встретить лишь в древнем оборудовании, которое до сих пор не заменено современным, да еще в музее.

Электронные реле времени

Пожалуй, одной из самых распространенных была серия реле ВЛ - 60…64 и некоторые другие, например ВЛ - 100…140. Все эти реле времени были построены на специализированной микросхеме КР512ПС10. Внешний вид реле серии ВЛ показан на рисунке 2.

Рисунок 2. Реле времени серии ВЛ.

Схема реле времени ВЛ - 64 показана на рисунке 3.

Рисунок 3.

При подаче на вход напряжения питания через выпрямительный мост VD1…VD4 напряжение через стабилизатор на транзисторе КТ315А подается на микросхему DD1, внутренний генератор которой начинает вырабатывать импульсы. Частота импульсов регулируется переменным резистором ППБ-3Б (именно он выведен на лицевую панель реле), включенным последовательно с времязадающим конденсатором 5100 пФ, который имеет допуск 1% и очень малый ТКЕ.

Полученные импульсы подсчитываются счетчиком с переменным коэффициентом деления, который устанавливается коммутацией выводов микросхемы M01…M05. В реле серии ВЛ эта коммутация выполнялась на заводе - изготовителе. Максимальный коэффициент деления всего счетчика достигает 235 929 600. Как утверждают в документации на микросхему, при частоте задающего генератора 1Гц выдержка может достигать свыше 9 месяцев! По мнению разработчиков этого вполне достаточно для любых приложений.

Вывод 10 микросхемы END - окончание выдержки, соединен с входом 3 - ST старт - стоп. Как только на выходе END появляется напряжение высокого уровня, счет импульсов останавливается, и на 9 выводе Q1 появляется напряжение высокого уровня, которое откроет транзистор КТ605 и сработает реле, подключенное к коллектору КТ605.

Современные реле времени

Как правило, изготавливаются на МК. Ведь проще запрограммировать готовую фирменную микросхему, добавить несколько кнопок, цифровой индикатор, чем изобретать что-то новое, да потом еще и заниматься точной настройкой времени. Такое реле показано на рисунке 4.

Рисунок 4.

Зачем делать реле времени своими руками?

И хотя существует такое огромное количество реле времени, практически на любой вкус, в иногда домашних условиях приходится делать что-то свое, часто очень простое. Но подобные конструкции чаще всего оправдывают себя целиком и полностью. Вот некоторые из них.

Коль скоро мы только что рассмотрели работу микросхемы КР512ПС10 в составе реле ВЛ, то рассмотрение любительских схем придется начать именно с нее. На рисунке 5 показана схема таймера.

Рисунок 5. Таймер на микросхеме КР524ПС10.

Питание микросхемы осуществляется от параметрического стабилизатора R4, VD1 с напряжением стабилизации около 5 В. В момент включения питания цепочка R1C1 формирует импульс сброса микросхемы. При этом запускается внутренний генератор, частота которого задается цепочкой R2C2 и внутренний счетчик микросхемы начинает счет импульсов.

Количество этих импульсов (коэффициент деления счетчика) задается коммутацией выводов микросхемы M01…M05. При указанном на схеме положении этот коэффициент составит 78643200. Такое количество импульсов составляет полный период сигнала на выходе END (выв. 10). Вывод 10 соединен с выводом 3 ST (старт / стоп).

Как только на выходе END устанавливается высокий уровень (отсчитали полпериода) счетчик останавливается. В этот же момент на выходе Q1 (выв. 9) также устанавливается высокий уровень, который открывает транзистор VT1. Через открытый транзистор включается реле K1, которое своими контактами управляет нагрузкой.

Для того, чтобы запустить выдержку времени еще раз достаточно кратковременно выключить и снова включить реле. Временная диаграмма сигналов END и Q1 показана на рисунке 6.

Рисунок 6. Временная диаграмма сигналов END и Q1.

При указанных на схеме номиналах времязадающей цепи R2C2 частота генератора около 1000 Гц. Поэтому выдержка времени при указанном подключении выводов M01…M05 составит около десяти часов.

Для точной настройки такой выдержки следует сделать следующее. Подключить выводы M01…M05 в позицию «Секунды_10», как показано в таблице на рисунке7.

Рисунок 7. Таблица установки времени таймера (для увеличения нажмите на рисунок) .

При таком подключении вращением переменного резистора R2 произвести настройку выдержки 10 сек. по секундомеру. После чего подключить выводы M01…M05, как показано на схеме.

Еще одна схема на КР512ПС10 показана на рисунке 8.

Рисунок 8. Реле времени на микросхеме КР512ПС10

Ещё таймер на микросхеме КР512ПС10.

Для начала обратим внимание на КР512ПС10, точнее на сигналы END, который не показан совсем, и сигнал ST, который просто соединен с общим проводом, что соответствует уровню логического нуля.

При таком включении не произойдет остановки счетчика, как показано на рисунке 6. Сигналы END и Q1 будут циклически, не останавливаясь продолжаться. При этом форма этих сигналов будет классическим меандром. Таким образом, получился просто генератор прямоугольных импульсов, частота которых может регулироваться переменным резистором R2, а коэффициент деления счетчика можно устанавливать согласно таблицы, показанной на рисунке 7.

Непрерывные импульсы с выхода Q1 поступают на счетный вход десятичного счетчика - дешифратора DD2 К561ИЕ8. Цепочка R4C5 при включении питания сбрасывает счетчик в ноль. В результате на выходе дешифратора «0» (выв. 3) появляется высокий уровень. На выходах 1…9 низкие уровни. С приходом первого счетного импульса высокий уровень перемещается на выход «1», второй импульс устанавливает высокий уровень на выходе «2» и так далее, вплоть до выхода «9». После чего счетчик переполняется и цикл счета начинается заново.

Полученный управляющий сигнал через переключатель SA1 можно подать на генератор звукового сигнала на элементах DD3.1…4, либо на усилитель реле VT2. Величина выдержки времени зависит от положения переключателя SA1. При указанных на схеме соединениях выводов M01…M05 и параметрах времязадающей цепочки R2C2 можно получить выдержки времени в пределах от 30 секунд до 9 часов.

Давно искал какое то простое устройство, чтобы ограничить время работы различных приборов. Таймеров продается много, в том же Китае, с реле и всякими опциями. Даже купил один такой, но хотелось простоты. И попался мне на глаза вот этот - C005.
Размеры платки 12 на 12 миллиметров.
Информации по таймеру не так много, но кое что нашел и кратко здесь приведу.
Напряжение питания от 2 до 5 вольт. Ток на выходе до 30мА. Ток потребления в ждущем режиме зафиксировать не удалось. В работе примерно 120 мкА. Вариант схемы включения.

Время задается внешним резистором Rt. Работает просто, управляется TTL уровнями. Запускается спадом (переход 1-0) на входе запуска - Trigger. Процесс запуска сопровождается появлением низкого уровня на выходе - Out, а после отработки заданного времени возвращается к высокому состоянию. В процессе работы состояния входа запуска на время таймера не влияет, он не перезапускается и отрабатывает заданное время. Даже сохранение низкого уровня на входе запуска, после отработки заданного времени, вновь таймер не запускает. Зависимость времени от сопротивления представлена в таблице.
От напряжения питания время немного меняется. Максимальное время примерно 2 часа. Таблица довольно точно соответствует действительности, проверил с несколькими сопротивлениями. На плате есть еще два контакта обозначенные как P1 и P2. Если замкнуть P1, то время увеличится в 8 раз, если P2 в 64 раза и если оба то 512 раз. Это, как не сложно подсчитать, около 40 дней.
Несколько слов для чего хочу использовать. Первым делом хочу ограничить время работы уличного самодельного на даче. Для управления купил радиопульт. В блоке управления там есть реле и в принципе можно прожектор подключить к нему напрямую, но я же хотел ограничить время работы. Вдруг кто забудет выключить. Так же некоторая защита от случайного срабатывания.
Схема примерно будет такая.

Дополнительная информация


В заключение хочу сказать, что за такие деньги таймер очень хорош. Минимум навесных деталей и широкий временной диапазон. Вариантов использования можно придумать разных, каждый решает сам.
Из минусов - контакты покрыты какой то гадостью и не паяются, пришлось чистить шкуркой. Планирую купить +111 Добавить в избранное Обзор понравился +111 +176

Понравилась статья? Поделитесь с друзьями!