Технеций применение. Технеций Tc. Смотреть что такое "технеций" в других словарях

Впервые получен Сегрэ в 1937 г. бомбардировкой молибденовой мишени дейтронами. Как первый из искусственно полученных, был назван технецием (Technetium, от tecnh - искусство). В соответствии с правилом об устойчивости ядер он оказался нестабильным. Позднее было получено еще несколько искусственных изотопов технеция. Все они также неустойчивы. Наиболее долгоживущий изотоп технеция, найденный в 1947 г. среди продуктов распада урана (99 Тс), имеет период полураспада ~2 . 10 5 лет. Возраст Земли примерно в 10 000 раз больше. Из этого следует, что даже если первоначально технеций и содержался в земной коре, то за это время он должен был бы исчезнуть. Однако Паркеру и Курода (Parker, Kuroda, 1956) удалось доказать, что в природном уране в крайне незначительных количествах присутствует радиоактивный изотоп молибдена 99 Мо, который имеет период полураспада 67 час и в результате b -распада превращается в 99 Тс. Это указывало на то, что 99 Tc непрерывно образуется при спонтанном ядерном распаде 238 U. Следовательно, технеций, очевидно, имеется в природе, несмотря на то, что до сих пор он непосредственно еще не обнаружен.

Получение:

В заметных количествах получают изотоп 99 Тс, так как он является одним из продуктов распада урана в атомных реакторах, а также вследствие его слабой радиоактивности. В виде Тс 2 S 7 его осаждают сероводородом из водного раствора, подкисленного соляной кислотой. Черный осадок сульфида растворяют в аммиачном растворе перекиси водорода и полученное соединение, пертехнетат аммония NH 4 TcО 4 , прокаливают в токе водорода при температуре 600°.
Металлический технеций можно легко выделить из кислого раствора электролитически.

Физические свойства:

Технеций - металл серебристо-серого цвета. Кристаллизуется, по данным Муна (Моопеу, 1947), в решетке с гексагональной плотнейшей упаковкой (а = 2,735, с = 4,388 А°).

Химические свойства:

По химическим свойствам технеций очень сходен с рением, а также подобен соседнему по периодической системе молибдену. Это обстоятельство используют при работе с ничтожно малыми количествами технеция. Он нерастворим ни в соляной кислоте, ни в щелочном растворе перекиси водорода, но легко растворяется в азотной кислоте и в царской водке. При нагревании в токе кислорода сгорает с образованием светло-желтой летучей семиокиси Tс 2 О 7 .

Важнейшие соединения:

Tс 2 О 7 при растворении в воде образует технециевую ("пертехнециевую") кислоту НТсО 4 , которую при упаривании раствора можно выделить в виде темно-красных, продолговатых кристаллов. НТсО 4 - сильная одноосновная кислота. Ее темно-красные концентрированные водные растворы при разбавлении быстро обесцвечиваются. Пертехнетат аммония NH 4 TcО 4 бесцветен и в чистом состоянии негигроскопичен.
Черный осадок сульфида Тс 2 S 7 осаждают сероводородом из подкисленного водного раствора. Сульфиды технеция нерастворимы в разбавленной соляной кислоте.

Применение:

Ввиду того что из отходов атомных реакторов можно наладить непрерывное производство наиболее долгоживущего изотопа 99 Тc, не исключена возможность его технического применения в будущем. Технеций относится к числу наиболее эффективных поглотителей медленных нейтронов. В связи с этим следует, очевидно, принимать в расчет его использование для экранирования ядерных реакторов.
Изотоп Tc применяют как g излучатель в медицинской диагностике.
Количества технеция, получаемого в настоящее время, исчисляются несколькими граммами.

См. также:
С.И. Венецкий О редких и рассеянных. Рассказы о металлах.

Технеций
Атомный номер 43
Внешний вид простого вещества
Свойства атома
Атомная масса
(молярная масса)
97,9072 а. е. м. (г/моль)
Радиус атома 136 пм
Энергия ионизации
(первый электрон)
702,2 (7,28) кДж/моль (эВ)
Электронная конфигурация 4d 5 5s 2
Химические свойства
Ковалентный радиус 127 пм
Радиус иона (+7e)56 пм
Электроотрицательность
(по Полингу)
1,9
Электродный потенциал 0
Степени окисления от -1 до +7; наиболее устойчива +7
Термодинамические свойства простого вещества
Плотность 11,5 /см ³
Молярная теплоёмкость 24 Дж /( ·моль)
Теплопроводность 50,6 Вт /( ·)
Температура плавления 2445
Теплота плавления 23,8 кДж /моль
Температура кипения 5150
Теплота испарения 585 кДж /моль
Молярный объём 8,5 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки a=2,737 c=4,391
Отношение c/a 1,602
Температура Дебая 453
Tc 43
97,9072
4d 5 5s 2
Технеций

Технеций — элемент побочной подгруппы седьмой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 43. Обозначается символом Tc (лат. Technetium). Простое вещество технеций (CAS-номер: 7440-26-8) — радиоактивный переходный металл серебристо-серого цвета. Самый лёгкий элемент, не имеющий стабильных изотопов.

История

Технеций был предсказан как эка-марганец Менделеевым на основе его Периодического закона. Несколько раз он был ошибочно открыт (как люций, ниппоний и мазурий), настоящий технеций был открыт в 1937 году.

Происхождение названия

τεχναστος — искусственный.

Нахождение в природе

В природе встречается в ничтожных количествах в урановых рудах, 5·10 -10 г на 1 кг урана.

Получение

Технеций получают из радиоактивных отходов химическим способом. Выход изотопов технеция при делении 235 U в реакторе:

Изотоп Выход, %
99 Tc 6,06
101 Tc 5,6
105 Tc 4,3
103 Tc 3,0
104 Tc 1,8
105 Tc 0,9
107 Tc 0,19

Кроме того, технеций образуется при спонтанном делении изотопов 282 Th, 233 U, 238 U, 239 Pu и может накапливаться в реакторах килограммами за год.

Физические и химические свойства

Технеций — радиоактивный переходный металл серебристо-серого цвета с гексагональной решёткой (a = 2,737 Å; с = 4,391 Å).

Изотопы технеция

Радиоактивные свойства некоторых изотопов технеция:

Массовое число Период полураспада Тип распада
92 4,3 мин. β + , электронный захват
93 43,5 мин. Электронный захват (18%), изомерный переход (82%)
93 2,7 ч. Электронный захват (85%), β + (15%)
94 52,5 мин. Электронный захват (21%), изомерный переход (24%), β + (55%)
94 4,9 ч. β + (7%), электронный захват (93%)
95 60 сут. Электронный захват, изомерный переход (4%), β +
95 20 час. Электронный захват
96 52 мин. Изомерный переход
96 4,3 сут. Электронный захват
97 90,5 сут. Электронный захват
97 2,6·10 6 лет Электронный захват
98 1,5·10 6 лет β -
99 6,04 ч. Изомерный переход
99 2,12·10 6 лет β -
100 15,8 сек. β -
101 14,3 мин. β -
102 4,5 мин/5 сек β - , γ/β -
103 50сек. β -
104 18 мин. β -
105 7,8 мин. β -
106 37 сек. β -
107 29 сек. β -

Применение

Используется в медицине для контрастного сканирования желудочно-кишечного тракта при диагностике ГЭРБ и рефлюкс-эзофагита посредством меток.

Пертехнетаты (соли технециевой кислоты HTcO 4) обладают антикорозионными свойствами, т.к. ион TcO 4 - , в отличие от ионов MnO 4 - и ReO 4 - , является самым эффективным ингибитором коррозии для железа и стали.

Биологическая роль

С химической точки зрения технеций и его соединения малотоксичны. Опасность технеция вызывается его радиотоксичностью.

Технеций при введении в организм попадает почти во все органы, но в основном задерживается в желудке и щитовидной железе. Поражение органов вызывается его β-излучением с дозой до 0,1 р/(час·мг).

При работе с технецием используются вытяжные шкафы с защитой от его β-излучения или герметичные боксы.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Химическая формула

Молярная масса TcCl 4 , хлорид технеция (IV) 239.812 г/моль

Массовые доли элементов в соединении

Использование калькулятора молярной массы

  • Химические формулы нужно вводить с учетом регистра
  • Индексы вводятся как обычные числа
  • Точка на средней линии (знак умножения), применяемая, например, в формулах кристаллогидратов, заменяется обычной точкой.
  • Пример: вместо CuSO₄·5H₂O в конвертере для удобства ввода используется написание CuSO4.5H2O .

Калькулятор молярной массы

Моль

Все вещества состоят из атомов и молекул. В химии важно точно измерять массу веществ, вступающих в реакцию и получающихся в результате нее. По определению моль является единицей количества вещества в СИ. Один моль содержит точно 6,02214076×10²³ элементарных частиц. Это значение численно равно константе Авогадро N A , если выражено в единицах моль⁻¹ и называется числом Авогадро. Количество вещества (символ n ) системы является мерой количества структурных элементов. Структурным элементом может быть атом, молекула, ион, электрон или любая частица или группа частиц.

Постоянная Авогадро N A = 6.02214076×10²³ моль⁻¹. Число Авогадро - 6.02214076×10²³.

Другими словами моль - это количество вещества, равное по массе сумме атомных масс атомов и молекул вещества, умноженное на число Авогадро. Единица количества вещества моль является одной из семи основных единиц системы СИ и обозначается моль. Поскольку название единицы и ее условное обозначение совпадают, следует отметить, что условное обозначение не склоняется, в отличие от названия единицы, которую можно склонять по обычным правилам русского языка. Один моль чистого углерода-12 равен точно 12 г.

Молярная масса

Молярная масса - физическое свойство вещества, определяемое как отношение массы этого вещества к количеству вещества в молях. Говоря иначе, это масса одного моля вещества. В системе СИ единицей молярной массы является килограмм/моль (кг/моль). Однако химики привыкли пользоваться более удобной единицей г/моль.

молярная масса = г/моль

Молярная масса элементов и соединений

Соединения - вещества, состоящие из различных атомов, которые химически связаны друг с другом. Например, приведенные ниже вещества, которые можно найти на кухне у любой хозяйки, являются химическими соединениями:

  • соль (хлорид натрия) NaCl
  • сахар (сахароза) C₁₂H₂₂O₁₁
  • уксус (раствор уксусной кислоты) CH₃COOH

Молярная масса химических элементов в граммах на моль численно совпадает с массой атомов элемента, выраженных в атомных единицах массы (или дальтонах). Молярная масса соединений равна сумме молярных масс элементов, из которых состоит соединение, с учетом количества атомов в соединении. Например, молярная масса воды (H₂O) приблизительно равна 1 × 2 + 16 = 18 г/моль.

Молекулярная масса

Молекулярная масса (старое название - молекулярный вес) - это масса молекулы, рассчитанная как сумма масс каждого атома, входящего в состав молекулы, умноженных на количество атомов в этой молекуле. Молекулярная масса представляет собой безразмерную физическую величину, численно равную молярной массе. То есть, молекулярная масса отличается от молярной массы размерностью. Несмотря на то, что молекулярная масса является безразмерной величиной, она все же имеет величину, называемую атомной единицей массы (а.е.м.) или дальтоном (Да), и приблизительно равную массе одного протона или нейтрона. Атомная единица массы также численно равна 1 г/моль.

Расчет молярной массы

Молярную массу рассчитывают так:

  • определяют атомные массы элементов по таблице Менделеева;
  • определяют количество атомов каждого элемента в формуле соединения;
  • определяют молярную массу, складывая атомные массы входящих в соединение элементов, умноженные на их количество.

Например, рассчитаем молярную массу уксусной кислоты

Она состоит из:

  • двух атомов углерода
  • четырех атомов водорода
  • двух атомов кислорода
  • углерод C = 2 × 12,0107 г/моль = 24,0214 г/моль
  • водород H = 4 × 1,00794 г/моль = 4,03176 г/моль
  • кислород O = 2 × 15,9994 г/моль = 31,9988 г/моль
  • молярная масса = 24,0214 + 4,03176 + 31,9988 = 60,05196 g/mol

Наш калькулятор выполняет именно такой расчет. Можно ввести в него формулу уксусной кислоты и проверить что получится.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Задача 1. Напишите электронную формулу атома технеция. Сколько электронов находится на d-подуровне предпоследнего электронного слоя? К какому электронному семейству относится элемент?

Решение: Атом Tc в таблице Менделеева имеет порядковый номер 43. Следовательно, в его оболочке содержится 43 электрона. В электронной формуле распределяем их по подуровням согласно порядку заполнения (в соответствии с правилами Клечковского) и учитывая емкость подуровней: Tc 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 5 5s 2 . При этом порядок заполнения подуровней следующий: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d. Последний электрон располагается на 4d-подуровне, значит, технеций относится к семейству d-элементов. На d-подуровне предпоследнего (4-го) слоя находится 5 электронов.

Ответ: 5, d.

Задача 2. Атом какого элемента имеет электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 1 ?

Решение:

Количество электронов в оболочке нейтрального атома составляет 49. Поэтому его заряд ядра и, следовательно, порядковый номер, также равны 49. В периодической системе Д.И.Менделеева находим, что этот элемент – индий.

Задача 3. У какого из перечисленных ниже соединений наименее выражены кислотные свойства? а) HNO 3 , б) H 3 PO 4 , в) H 3 AsO 4 , г) H 3 SbO 4 .

Решение:

Приведенные кислородсодержащие соединения являются гидроксидами элементов главной подгруппы V группы таблицы Менделеева. Известно, что кислотные свойства гидроксидов ослабевают сверху вниз в подгруппе. Поэтому в указанном ряду наименее выраженными кислотными свойствами обладает H 3 SbO 4 .

Ответ: H 3 SbO 4 .

Задача 4. Укажите тип гибридизации орбиталей бора в молекуле BBr 3 .

Решение:

В образовании трех ковалентных связей между бором и атомами брома участвуют одна s- и две p-орбитали атома бора, свойства которых различаются. Поскольку все химические связи в молекуле BBr 3 равноценны, атом бора подвергается гибридизации. В ней принимают участие указанные выше три орбитали внешнего электронного слоя. Следовательно, тип гибридизации – sp 2 .

Ответ: sp 2 .

Задача 5. По данным периодической системы составьте эмпирическую формулу высшего оксида свинца. Какова его молярная масса?

Решение:

Свинец находится в 4-й группе периодической системы, поэтому его высшая степень окисления равна +4. Атом кислорода в оксидах имеет степень окисления –2, следовательно в молекуле оксида на каждый атом свинца приходится два атома кислорода. Формула высшего оксида – PbO 2 . Вычислим его молярную массу: 207+2·16=239.

Ответ: 239 г/моль.

Задача 6. Какие виды химической связи имеются в молекуле NH 4 I ?

Решение:

Молекула NH 4 I состоит из ионов NH 4 + и I – , между которыми имеется ионная связь. В ионе NH 4 + четыре связи являются ковалентными полярными, причем одна из них образована по донорно-акцепторному типу (см. раздел 3.2.3).

Ответ: ионная, ковалентная полярная, донорно-акцепторная.

Задача 7. Расчет энергии связи .

Вычислите энергию связи H-S в молекуле H 2 S по следующим данным: 2H 2 (г) + S 2 (г) = 2 H 2 S (г) – 40,30 кДж; энергии связей D(H-H) и D(S-S) соответственно равны –435,9 кДж/моль и – 417,6 кДж/моль.

Решение: Образование двух молекул H 2 S можно представить как последовательный процесс разрыва связей H-H в молекуле H 2 и связей S-S в молекуле S 2 :

2 H-H 4 Н – 2D(H-H)

S-S 2 S – D(S-S)

4 Н + 2 S 2 H 2 S + 4D(S-H),

гдеD(H-H), D(S-S) и D(S-H) – энергии образования связей H-H, S-S и S-Н соответственно. Суммируя левые и правые части приведенных уравнений, приходим к термохимическому уравнению

2H 2 (г) + S 2 (г) = 2 H 2 S (г) –2D(H-H) – D(S-S) + 4D(S-H).

Тепловой эффект этой реакции равен

Q =–2D(H-H) – D(S-S) + 4D(S-H), откудаD(S-H)= .

Задача 8. Вычисление длины связи.

Рассчитайте длину связи в молекуле HBr, если межъядерное расстояние в молекулах Н 2 и Br 2 ,равны 0,74 10 -10 и 2,28 10 -10 м соответственно.

Решение: Длина ковалентной связи между двумя разноименными атомами равна сумме их ковалентных радиусов

l(H-Br) = r(H) + r(Br).

В свою очередь, ковалентный радиус атома определяется как половина межъядерного расстояния в молекулах Н 2 и Br 2 :

Таким образом,

Ответ: 1,51·10 -10 м.

Задача 9. Определение вида гибридизации орбиталей и пространственной структуры молекулы.

Какой вид гибридизации электронных облаков имеет место в атоме кремния при образования молекулы SiF 4 ? Какова пространственная структура этой молекулы?

Решение: В возбужденном состоянии структура внешнего энергетического уровня атома кремния следующая:

3s 3p
3s 3p x 3p y 3p z

В образовании химических связей в атоме кремния участвуют электроны третьего энергетического уровня: один электрон в s-состоянии и три электрона в р-состоянии. При образовании молекулы SiF 4 возникают четыре гибридных электронных облака (sp 3 -гибридизациия). Молекула SiF 4 имеет пространственную тетраэдрическую конфигурацию.

Задача 10. Определение валентностей элементов в химических соединениях на основе анализа графических электронных формул основного и возбужденных состояний атомов этих элементов .

Какую валентность, обусловленную неспаренными электронами,может проявлять сера в основном и в возбужденном состоянии?

Решение: Распределение электронов внешнего энергетического уровня серы …3s 2 3p 4 с учетом правила Гунда имеет вид:

s p d
16 S

Из анализа основного и двух возбужденных состояний следует, что валентность (спинвалентность) серы в нормальном состоянии равна двум, в первом возбужденном состоянии – четырем, во втором – шести.

Варианты контрольных заданий

Вариант 1

1. Какие сведения об элементе можно узнать на основании его положения в ПСЭ?

2. Напишите электронные формулы атомов элементов с порядковыми номерами 9 и 28. Покажите распределение электронов этих атомов по квантовым ячейкам. К какому электронному семейству относится каждый из этих элементов?

Вариант 2

1. Дайте определения: энергии ионизации, сродства к электрону и электроотрицательности атома? Как они изменяются в периоде и группе?

2. Напишите электронные формулы атомов элементов с порядковыми номерами 16 и 26. Распределите электроны этих атомов по квантовым ячейкам. К какому электронному семейству относится каждый из этих элементов?

Вариант 3

1. Какая ковалентная связь называется полярной и какая неполярной? Что служит количественной мерой полярности ковалентной связи?

2. Какое максимальное число электронов могут занимать s -, p -, d - и f -орбитали данного энергетического уровня? Почему? Напишите электронную формулу атома элемента с порядковым номером 31.

Вариант 4

1. Как метод валентных связей (ВС) объясняет линейное строение молекулы ВеСI 2 ?

4s или 3d ; 5s или 4p ? Почему? Напишите электронную формулу атома элемента с порядковым номером 21.

Вариант 5

1. Какая связь называется σ- связью и какая π-связью?

2. Какие орбитали атома заполняются электронами раньше: 4d или 5s ; 6s или 5p ? Почему? Напишите электронную формулу атома элемента с порядковым номером 43.

Вариант 6

1. Что называется дипольным моментом?

2. Напишите электронные формулы атомов элементов с порядковыми номерами 14 и 40. Сколько свободных 3d -орбиталей у атомов последнего элемента?

Вариант 7

1. Какая химическая связь называется ионной? Каков механизм его образования?

2. Напишите электронные формулы атомов элементов с порядковыми номерами 21 и 23. Сколько свободных 3d -орбиталей в атомах этих элементов?

Вариант 8

1. Какой вариант периодической системы наиболее широко применяется и почему?

2. Сколько свободных d- орбиталей содержится в атомах Sc, Ti, V? Напишите электронные формулы атомов этих элементов.

Вариант 9

1. Какие свойства ионной связи отличают её от ковалентной?

2. Пользуясь правилом Гунда, распределите электроны по квантовым ячейкам, отвечающим низшему энергетическому состоянию атомов: хрома, фосфора, серы, германия, никеля.

2. Для атома бора возможны два различных электронных состояния и . Как называют эти состояния? Как перейти от первого состояния ко второму?

Вариант 11

1. Какие из 4-х разнообразных типов атомных орбиталей имеют наиболее сложную формулу?

2. Атому какого из элементов отвечает каждая из приведенных электронных формул:

а) ;б) ;

Вариант 12

2. Пользуясь правилом Гунда, распределите электроны по квантовым ячейкам, отвечающим высшему энергетическому состоянию атомов: марганца, азота, кислорода, кремния, кобальта.

Вариант 13

1. Если в р-орбиталях какого–либо слоя находятся 4 электрона, сколько из них имеют неспаренные спины и чему равно их суммарное спиновое число 7

2. Атомам каких элементов и каким состояниям этих элементов отвечают следующие электронные формулы и ; и ?

Вариант 14

1. Какие характеристики атома можно назвать, зная: а) порядковый номер элемента в периодической системе; б) номер периода; в) номер и вид группы, в которой расположен элемент?

2. Напишите электронную конфигурацию атомов, пользуясь электронными формулами для элементов с порядковыми номерами 12, 25, 31, 34, 45.

Вариант 15

1. Как определить исходя из положения атома в периодической системе число элементарных частиц в егосоставе? Определите число элементарных частиц в составе атомов серы и цинка.

2. Пользуясь правилом Гунда, распределите электроны по энергетическим ячейкам, соответствующим низшему энергетическому состоянию, для атомов элементов с порядковыми номерами 26, 39, 49, 74, 52.

Вариант 16

1. Что такое квантовые числа? Какие свойства орбиталей и электронов они отражают? Какие значения принимают? Определите максимально возможное число электронов на каждом энергетическом уровне атомов алюминия и меди.

2. Какие из электронных формул, отражающих строение невозбужденного атома некоторого элемента, неверны: а) 1s 2 2s 2 2p 5 3s 1 ; б) 1s 2 2s 2 2p 6 ; в) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 ; г) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ; д) 1s 2 2s 2 2p 6 3s 2 3d 2 ? Почему? Атомам каких элементов отвечают правильно составленные электронные формулы?

Вариант 17

1. Какие принципы положены в основу всех современных теорий химической связи? Что такое ионная связь? Какими свойствами она обладает? Приведите примеры соединений с ионной связью.

2. Напишите электронные формулы атомов элементов с порядковыми номерами 24 и 33, учитывая, что у первого происходит «провал» одного 4s -электрона на 3d-подуровень. Чему равен максимальный спин d -электронов у атомов первого и p -электронов у атомов второго элемента?

Вариант 18

1. Что такое электроотрицательность? Как изменяется электроотрицательность р -элементов в периоде, в группе периодической системы с увеличением порядкового номера? Почему?

2. Составьте электронные формулы атомов элементов с порядковыми номерами 32 и 42, учитывая, что у последнего происходит «провал» одного 5s -электрона на 4d -подуровень. К какому электронному семейству относится каждый из этих элементов?

Вариант 19

1. Какие значения могут принимать квантовые числа n, l, m l и m S , характеризующие состояние электронов в атоме? Какие значения они принимают для внешних электронов атома магния?

2. Сколько свободных f -орбиталей содержится в атомах элементов с порядковыми номерами 61, 62, 91, 92? Пользуясь правилом Гунда, распределите электроны по энергетическим ячейкам для атомов этих элементов.

Вариант 20

1. Что такое энергия ионизации? В каких единицах она выражается? Как изменяется восстановительная активность s - и p -элементов в группах периодической системы с увеличением порядкового номера? Почему?

2. В чем заключается принцип Паули? Может ли быть на каком-нибудь подуровне атома р 7 - или d 12 - электронов? Почему? Составьте электронную формулу атома элемента с порядковым номером 22 и укажите его валентные электроны..

Вариант 21

1. Перечислите правила, в соответствии с которыми происходит заполнение электронами орбиталей. Что такое электронная формула атома? Напишите электронные формулы кремния и железа, подчеркнув валентные электроны.

2. Квантовые числа для электронов внешнего энергетического уровня атомов некоторых элементов имеют следующие значения: n = 4; l = 0; m l = 0; m S = . Напишите электронные формулы атомов этих элементов и определите сколько свободных 3d -орбиталей содержит каждый их них.

Вариант 22

1. Что такое изотопы? Чем можно объяснить, что у большинства элементов периодической системы атомные массы выражаются дробным числом? Могут ли атомы разных элементов иметь одинаковую массу? Как называются подобные атомы?

2. Исходя из положения металла в периодической системе, дайте мотивированный ответ на вопрос: какой из двух гидроксидов более сильное основание: Ba(OH) 2 или Mg(OH) 2 ; Ca(OH) 2 или Fe(OH) 2 ; Cd(OH) 2 или Sr(OH) 2 ?

Вариант 23

1. Что такое сродство к электрону? В каких единицах оно выражается? Как изменяется окислительная активность неметаллов в периоде и в группе периодической системы с увеличением порядкового номера? Ответ мотивируйте строением атома соответствующего элемента.

2. Марганец образует соединения, в которых он проявляет степень окисления +2, +3, +4, +6, +7. Составьте формулы его оксидов и гидроксидов, отвечающих этим степеням окисления. Напишите уравнения реакций, доказывающих амфотерность гидроксида марганца (IV).

Вариант 24

1. Как изменяются кислотно-основные и окислительно-восстановительные свойства высших оксидов и гидроксидов элементов с ростом заряда их ядер: а) в пределах периода; б) в пределах подгруппы.

2. Сколько и какие значения может принимать магнитное квантовое число m l при орбитальном числе l = 0, 1, 2 и 3? Какие элементы в периодической системе называют s-, p-, d- и f -элементами? Приведите примеры.

Вариант 25

1. Теория гибридизации. Механизм образования донорно-акцепторной связи. Примеры соединений

2. У какого из р -элементов пятой группы периодической системы – фосфора или сурьмы – сильнее выражены неметаллические свойства? Какое из водородных соединений данных элементов более сильный восстановитель? Ответ мотивируйте строением атома этих элементов.

Вариант 26

1. Какую низшую степень окисления проявляют хлор, сера, азот и углерод? Почему? Составьте формулы соединений алюминия с данными элементами в этой степени окисления. Как называются соответствующие соединения?

2. Энергетическое состояние внешнего электрона атома описывается следующими значениями квантовых чисел: n =4, l =0, m l =0. Атомы каких элементов имеют такой электрон? Составьте электронные формулы атомов этих элементов. Напишите все квантовые числа эля электронов атомов: а) лития, бериллия, углерода; б) азота, кислорода, фтора.

Вариант 27

1. Металлическая связь. Механизм образования и свойства. Примеры соединений и их свойства.

2. Исходя из положения германия и технеция в периодической системе, составьте формулы мета- и ортогерманиевой кислот, и оксида технеция, отвечающие их высшей степени окисления. Изобразите формулы этих соединений графически.

Вариант 28

1. У какого элемента четвертого периода – хрома или селена – сильнее выражены металлические свойства? Какой их этих элементов образует газообразное соединение с водородом? Ответ мотивируйте строением атомов хрома и селена.

2. Изотоп никеля-57 образуется при бомбардировке α-частицами ядер атомов железа-54. Составьте уравнение этой ядерной реакции и напишите его в сокращенной форме

Вариант 29

Напишите электронные формулы атомов элементов и назовите их, если значения квантовых чисел (n, l, m l , m S ) электронов наружного (последнего) и предпоследнего электронных слоев следующие:

а) 6, 0, 0, + ; 6, 0, 0, - ; 6, 1, -1, + ;

б) 3, 2, -2, + ; 3, 2, -1, + ; 4, 0, 0, + ; 4, 0, 0, - .

Вариант 30

1.Современные методы, описывающие образование ковалентной связи, их основные постулаты. Свойства ковалентной связи. Приведите примеры соединений с ковалентной связью и их свойства.

2. Составьте сравнительную характеристику элементов с порядковыми номерами 17 и 25 на основании их положения в ПСЭ. Объясните причины сходства и различия в свойствах этих элементов.


Похожая информация.


Технеций (лат. Technetium), Тс, радиоактивный химический элемент VII группы периодической системы Менделеева, атомный номер 43, атомная масса 98, 9062; металл, ковкий и пластичный.

Технеций стабильных изотопов не имеет. Из радиоактивных изотопов (около 20) практическое значение имеют два: 99 Тс и 99m Tc с периодами полураспада соответственно Т 1/2 = 2,12 ×10 5 лет и T 1/2 = 6,04 ч. В природе элемент находится в незначительных количествах - 10 -10 г в 1 т урановой смолки.

Физические и химические свойства.

Металлический Технеций в виде порошка имеет серый цвет (напоминает Re, Mo, Pt); компактный металл (слитки плавленого металла, фольга, проволока) серебристо-серого цвета. Технеций в кристаллическом состоянии имеет гексагональную решётку плотной упаковки (а = 2,735

, с = 4,391 ); в тонких слоях (менее 150 ) - кубическую гранецентрированную решётку (а = 3,68 ? 0,0005 ); плотность Т. (с гексагональной решёткой) 11,487 г/см 3 , t пл 2200 ? 50 ?С; t kип 4700 ?С; удельное электросопротивление 69 * 10 -6 ом×см (100 ?С); температура перехода в состояние сверхпроводимости Тс 8,24 К. Технеций парамагнитен; его магнитная восприимчивость при 25 0 С - 2,7 * 10 -4 . Конфигурация внешней электронной оболочки атома Тс 4d 5 5s 2 ; атомный радиус 1,358 ; ионный радиус Тс 7+ 0,56 .

По химическим свойствам Tc близок к Mn и особенно к Re, в соединениях проявляет степени окисления от -1 до +7. Наиболее устойчивы и хорошо изучены соединения Tc в степени окисления +7. При взаимодействии Технеция или его соединений с кислородом образуются окислы Tc 2 O 7 и TcO 2 , с хлором и фтором - галогениды ТсХ 6 , ТсХ 5 , ТсХ 4 , возможно образование оксигалогенидов, например ТсО 3 Х (где Х - галоген), с серой - сульфиды Tc 2 S 7 и TcS 2 . Технеций образует также технециевую кислоту HTcO 4 и её соли пертехнаты MеTcO 4 (где Ме - металл), карбонильные, комплексные и металлорганические соединения. В ряду напряжений Технеций стоит правее водорода; он не реагирует с соляной кислотой любых концентраций, но легко растворяется в азотной и серной кислотах, царской водке, перекиси водорода, бромной воде.

Получение.

Основным источником Технеция служат отходы атомной промышленности. Выход 99 Tc при делении 235 U составляет около 6%. Из смеси продуктов деления Технеций в виде пертехнатов, окислов, сульфидов извлекают экстракцией органическими растворителями, методами ионного обмена, осаждением малорастворимых производных. Металл получают восстановлением водородом NH 4 TcO 4 , TcO 2 , Tc 2 S 7 при 600-1000 0 С или электролизом.

Применение.

Технеций - перспективный металл в технике; он может найти применение как катализатор, высокотемпературный и сверхпроводящий материал. Соединения Технеция. - эффективные ингибиторы коррозии. 99m Tc используется в медицине как источник g-излучения. Технеций радиационноопасен, работа с ним требует специальной герметизированной аппаратуры.

История открытия.

Еще в 1846 году работавший в России химик и минералог Р. Герман нашел в Ильменских горах на Урале неизвестный ранее минерал, названный им иттроильменитом. Ученый не успокоился на достигнутом и попытался выделить из него новый химический элемент, который, как он считал, содержится в минерале. Но не успел он открыть свой ильмений, как известный немецкий химик Г. Розе, «закрыл» его, доказав ошибочность работ Германа.

Спустя четверть века ильмений снова появился на авансцене химии - о нем вспомнили как о претенденте на роль «эка - марганца», который должен был занять пустовавшее в периодической системе место под номером 43. Но репутация ильмения была сильно «подмочена» работами Г. Розе, и, несмотря на то, что многие его свойства, в том числе и атомный вес, вполне подходили для элемента № 43, Д. И. Менделеев не стал оформлять ему прописку в своей таблице. Дальнейшие исследования окончательно убедили научный мирв том, что ильмений может войти в историю химии лишь с печальной славой одного из многочисленных лжеэлементов.

Поскольку свято место пусто не бывает, претензии на право занять его появлялись одна за другой. Дэвий, люций, ниппоний - все они лопались, словно мыльные пузыри, едва успев появиться на свет.

Но вот в 1925 году немецкие ученые супруги Ида и Вальтер Ноддак опубликовали сообщение о том, что ими обнаружены два новых элемента - мазурий (№ 43) и рений (№ 75). К рению судьба оказалась благосклонной: он тут же был узаконен в правах и незамедлительно занял приготовленную для него резиденцию. А вот к мазурию фортуна повернулась спиной: ни его первооткрыватели, ни другие ученые не могли научно подтвердить открытие этого элемента. Правда, Ида Ноддак заявила, что «в скором времени мазурий, подобно рению, можно будет покупать в магазинах», но химики, как известно, словам не верят, а других, более убедительных доказательств супруги Ноддак представить не могли, - список «лжесороктретьих» пополнился еще одним неудачником.

В этот период некоторые ученые начали склоняться к мысли, что далеко не все элементы, предсказанные Менделеевым, в частности элемент № 43, существуют в природе. Может быть, их просто нет и незачем понапрасну терять время и ломать копья? К такому выводу пришел даже крупный немецкий химик Вильгельм Прандтль, наложивший «вето» на открытие мазурия.

Внести ясность в этот вопрос позволила младшая сестра химии - ядерная физика, успевшая уже к тому времени завоевать прочный авторитет. Одна из закономерностей этой науки (замеченная в 20-х годах советским химиком С. А. Щукаревым и окончательно сформулированная в 1934 году немецким физиком Г. Маттаухом) называется правилом Маттауха - Щукарева, или правилом запрета.

Смысл его заключается в том, что в природе не могут существовать два стабильных изобара, ядерные заряды которых отличаются на единицу. Другими словами, если у какого - либо химического элемента есть устойчивый изотоп, то его ближайшим соседям по таблице «категорически запрещается» иметь устойчивый изотоп с тем же массовым числом. В этом смысле элементу № 43 явно не повезло: его соседи слева и справа - молибден и рутений - позаботились о том, чтобы все стабильные вакансии близлежащих «территорий» принадлежали их изотопам. А это означало, что элементу № 43 выпала тяжкая доля: сколько бы изотопов он не имел, все они обречены на неустойчивость, и, таким образом, им приходилось непрерывно - днем и ночью - распадаться, хотели они того или нет.

Резонно предположить, что когда - то элемент № 43 существовал на Земле в заметных количествах, но постепенно исчез, как утренний туман. Так почему же в таком случае до наших дней сохранились уран и торий? Ведь они тоже радиоактивны и, следовательно, с первых же дней своей жизни распадаются, как говорится, медленно, но верно? Но именно в этом и кроется ответ на наш вопрос: уран и торий только потому и сохранились, что распадаются медленно, значительно медленнее, чем другие элементы с естественной радиоактивностью (и все же за время существования Земли запасы урана в ее природных кладовых уменьшились примерно в сто раз). Расчеты американских радиохимиков показали, что неустойчивый изотоп того или иного элемента имеет шансы, дожить в земной коре с момента «сотворения мира» до наших дней только в том случае, если его период полураспада превышает 150 миллионов лет. Забегая вперед, скажем, что когда были получены различные изотопы элемента № 43, выяснилось, что период полураспада самого долгоживущего из них лишь немногим больше двух с половиной миллионов лет, и, значит, последние его атомы перестали существовать, видимо, даже задолго до появления на Земле первого динозавра: ведь наша планета «функционирует» во Вселенной уже примерно 4,5 миллиарда лет.

Стало быть, если ученые хотели «пощупать» своими руками элемент № 43, его нужно было этими же руками и создавать, поскольку природа давно внесла его в списки пропавших. Но по плечу ли науке такая задача?

Да, по плечу. Это впервые экспериментально доказал еще в 1919 году английский физик Эрнест Резерфорд. Он подверг ядро атомов азота ожесточенной бомбардировке, в которой орудиями служили все время распадавшиеся атомы радия, а снарядами - образующиеся при этом альфа - частицы. В результате длительного обстрела ядра атомов азота пополнились протонами и он превратился в кислород.

Опыты Резерфорда вооружили ученых необыкновенной артиллерией: с ее помощью можно было не разрушать, а создавать - превращать одни вещества в другие, получать новые элементы.

Так почему бы не попытаться добыть таким путем элемент № 43? За решение этой проблемы взялся молодой итальянский физик Эмилио Сегре. В начале 30 - х годов он работал в Римском университете под руководством уже тогда знаменитого Энрико Ферми. Вместе с другими «мальчуганами» (так Ферми шутливо называл своих талантливых учеников) Сегре принимал участие в опытах по нейтронному облучению урана, решал многие другие проблемы ядерной физики. Но вот молодой ученый получил заманчивое предложение - возглавить кафедру физики в Палермском университете. Когда он приехал в древнюю столицу Сицилии, его ждало разочарование: лаборатория, которой ему предстояло руководить, была более чем скромной и вид ее отнюдь не располагал к научным подвигам.

Но велико было желание Сегре глубже проникнуть в тайны атома. Летом 1936 года он пересекает океан, чтобы побывать в американском городе Беркли. Здесь, в радиационной лаборатории Калифорнийского университета уже несколько лет действовал изобретенный Эрнестом Лоуренсом циклотрон - ускоритель атомных частиц. Сегодня это небольшое устройство показалось бы физикам чем - то вроде детской игрушки, но в то время первый в мире циклотрон вызывал восхищение и зависть ученых из других лабораторий (в 1939 году за его создание Э. Лоуренс был удостоен Нобелевской премии).



Понравилась статья? Поделитесь с друзьями!