Международное сотрудничество в освоении космоса. США и Россия: от соперничества к сотрудничеству

«Международное сотрудничество в освоении космического пространства»

Проверил преподаватель:

Иркутск, 2005 г.

ВВЕДЕНИЕ…………………………………………………………………….....3

МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ………………….4

МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО РОССИИ В КОСМОСЕ……….9

ПРОГРАММА “СОЮЗ - АПОЛЛОН” (ЭПАС)……………………………....13

МКС – ЖИВОЙ КВАРТАЛ В КОСМОСЕ……………………………...…….19

ЗАКЛЮЧЕНИЕ……………………………...………………………………….30

СПИСОК ЛИТЕРАТУРЫ…………………...………………………………….31

ВВЕДЕНИЕ

В своей работе я хочу рассмотреть тему «Международного сотрудничества в освоении космического пространства» и более детально узнать ее основные аспекты, потому что в последние годы - годы НТП (научно-технического прогресса) - одной из ведущих отраслей народного хозяйства является космос. Достижения в исследовании и эксплуатации космоса являются одним из важнейших показателей уровня развития страны. Несмотря на то, что это отрасль очень молодая, темпы ее развития очень высоки, и уже давно стало ясно, что исследования и использование космического пространства ныне немыслимы без широкого и разностороннего сотрудничества государств.

За очень короткий исторический срок космонавтика стала неотъемлемой частью нашей жизни, верным помощником в хозяйственных делах и познании окружающего мира. И не приходится сомневаться, что дальнейшее развитие земной цивилизации не может обойтись без освоения всего околоземного пространства. Освоение космоса - этой «провинции всего человечества» - продолжается нарастающими темпами.

В положительном плане на космос работают такие тенденции современных международных отношений , как глобализация , усиление интеграционных процессов и регионализма. С одной стороны, они ставят перед космической деятельностью задачи воистину глобального порядка, поскольку только космические средства делают возможным собирать, обрабатывать и распространять в масштабах планеты информацию о состоянии глобальных проблем. С другой – они позволяют объединять усилия и изыскивать средства для решения проблем национальных и региональных, обеспечивая экономическую рентабельность.

Для более полного освещения вопроса по моей теме, я старался использовать последние данные (конец 90-ых годов XX столетия и до наших дней). В этой работе было много нового подчеркнуто из журналов о космосе, таких как: «Международная жизнь» - где речь идет о рисках, возникающих при международном сотрудничестве в космосе, о том, что развитие индустрии космоса происходит главным образом за счет коммерческих полетов, и что даже такие страны как Россия или США, изучая космос, зачастую нуждаются в помощи инвесторов; «Гражданская авиация», «Авиасалоны мира», «Земля и вселенная» - где освещаются самые последние и подробные новости с борта МКС. Также я использовал и энциклопедические данные «Аванта+» и «Что такое? Кто такой?», где много статей о разнообразных и интересных международных космических программ.

МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ

С самого начала космической эры, ознаменовавшегося запуском первого искусственного спутника Земли, а затем первым полетом человека в космос, две первые мировые космические державы, СССР и США, сосредоточили свои усилия на амбициозных национальных проектах, направленных на достижение приоритетных результатов в военной, научной и технологической областях, мало считаясь с финансовыми затратами.

На рубеже 90-х годов, а по сути, начиная с годов, катализатором интеграционных процессов между национальными космическими программами стала созданная Совместная российско-американская комиссия по экономическому и технологическому сотрудничеству.

Космонавтика становится естественно функционирующей отраслью национальной и мировой экономики, подчиняющейся ее основным законам и тенденциям развития. Наиболее важными факторами воздействия на развитие космонавтики становятся коммерциализация космической деятельности и интеграционные процессы, они стимулируют экономическую активность космической отрасли, превращаясь, таким образом, в существенный внебюджетный стимул к прогрессу космонавтики. Особенно важным этот аспект представляется в период резкого сокращении бюджетных ассигнований в России на космические исследования . Анализ положительного и отрицательного опыта коммерческих космических проектов показывает, что успех в первую очередь присутствует там, где космические технологии смогли органично встроиться в качестве дополнения в уже существующие рынки. Очевидно, что движущей силой космического рынка на ближайшие годы станет развитие космического сегмента глобальной информационной инфраструктуры, обеспечивающего конвергенцию информационных потоков различного назначения (связь, наблюдение, цифровое телерадиовещание, телефония, межкомпьютерная мультимедийная связь-Интернет другие) и их адресное распределение на орбите в увязке с продолжающим развиваться наземным сегментом.

Представляется, что дальнейшее успешное развитие крупномасштабных космических программ, требующее вложения колоссальных научно-технических, экономических, интеллектуальных и других ресурсов, невозможно без эффективной организации международного сотрудничества, являющегося, как показывает опыт последнего десятилетия, наиболее прогрессивной формой реализации космических проектов. Раньше всего это положение проявилось при реализации научных космических проектов, когда комплексы уникальной аппаратуры на космических аппаратах научного назначения стали формироваться учеными различных стран - мировыми лидерами в разработке аппаратуры различных типов.

Реальными примерами такого сотрудничества можно назвать широко известные проекты по исследованию Венеры, кометы Галлея, Марса («Марс-Одиссей»2001), существенно отстающую от первоначального графика, но тем не менее продолжающуюся программу «Спектр - Рентген- Гамма» и другие.

Очевидные выгоды объединения международных ресурсов в рамках масштабных и технологически сложных проектов исследования космоса сопровождаются появлением проблем, оказывающих влияние на развитие глобальной кооперации в этой сфере.

В первую очередь это касается проблем разработки принципов и стандартов в области управления совместными проектами, экономики, права, технических стандартов. Определенные трудности вызывают языковые и культурные различия.

Другим блоком сегодня являются проблемы обеспечения контроля над распространением ракетных технологий, применением которых может представлять потенциальную серьезную угрозу мирового сообщества в случае применения в незаявленных целях или утечки таких технологий в страны, не присоединившихся к международным режимам не распространения.

Возможности преодоления таких административных барьеров на межгосударственном уровне в целом либо, в частности. Для каждого отдельно взятого международного проекта являются сегодня критерием оценки выгоды и риска при принятии партнерами решения об участии в международной кооперации.

Несмотря на трудности последнего десятилетия, Россия по-прежнему сохраняет достаточно мощный научно-промышленный потенциал и высокий уровень конкурентоспособности в области ключевых космических технологий, продолжая вести исследования и разработки по всем основным направлениям космической деятельности. Подтверждением сказанного является вовлеченность российских предприятий и организаций во многие широко известные космические программы и проекты.

Здесь следовало упомянуть такие программы, как совместный российско-американский проект «Мир-Шаттл», который является первой фазой отработки технологий для программы Международной космической станции (МКС). Начиная с 1993 года Россия вышла на международный рынок услуг по коммерческим запускам, что дало импульс совместным проектам по спутниковой связи («Тройка»), по проектным двигателям (РД-180); в 90-х годах пика достиг и уровень совместных проектов в сфере космических наук и наук о Земле.

Согласно данным российских системных аналитиков, по-прежнему только две страны мира – Россия и США обладают научно-техническим и производственным потенциалом с полным набором необходимых технологий для реализации космических проектов по любым направлениям космической деятельности.

Научно-технические достижения российской космонавтики более чем за 50-летнюю историю ее развития достаточно хорошо известны и, вероятно, не требуют подробного комментария. Известно, что экономический вклад СССР, а затем и России в создании национального космического потенциала за 50 лет, включая затраты на развитие науки и технологий, создание производственно-техгологической и экспериментальной базы, эксплуатацию, образования и подготовку высококвалифицированных кадров, оцениваются российскими экономистами по трудоемкости в величину около 10 млн. человеко-лет исходя из средней численности занятых в этой отрасли 200 тысяч человек.

Сегодня более 50 стран мирового сообщества официально имеют космические бюджеты, и гораздо большее количество стран связано с развитием космической деятельности. Однако известные цифры размеров современных космических бюджетов большинства стран мира (от сотен миллионов до единиц миллиардов долларов) показывают, что для повторения пройденного Россией и США пути, даже без повторения ошибок, понадобятся десятки лет.

При этом выгода международного сотрудничества очевидна как для стран, являющихся пионерами космонавтики. Так и для государств, только начинающих осваивать космические технологии:

Опытные лидеры космонавтики в результате получают прямые экономически выгоды через расширение своих позиций на мировом космическом рынке путем продажи товаров, технологий и услуг за рубежом.

Для стран с более короткой космической историей инвестиции в зарубежные проекты также рассматриваются как форма исключения технического и коммерческого рисков , связанных со спецификой космической деятельности.

Очевидно, что развитие международной коммерческой кооперации создает перспективу доходности инвестиций в космическую промышленность за счет снижения затрат на проекты в силу разной стоимости в различных странах факторов производства (сырья, капитала, труда, знаний и ноу-хау) и разной нормы окупаемости инвестиций.

В ходе реализации международных проектов возникают и риски, с защитой от распространения ракетных технологий, могущих оказать влияние на создание средств доставки оружия массового поражения в странах, не являющихся членами международных режимов по нераспространению.

Комплексный анализ рисков включает в себя такие основные категории рисков, как технический, экономический и политический риски.

К техническим рискам относится отказ ракетно-космической техники, которые являются наиболее частыми причинами неудач космических проектов.

К экономическим (коммерческим) рискам относятся риски, связанные с возможностью потерь финансовых средств, неполучения доходов, с дополнительными затратами на реализацию проекта.

К политическим рискам относятся неожиданные изменения политической ситуации в стране, приводящих к нарушению условий выполнения космических проектов.

Для решения этих задач необходимо ужесточение общего подхода к вопросам контроля над нераспространением ракетных технологий, принятием законов и подзаконных актов, устранение дискриминационных барьеров и облегчение свободного доступа на мировой космический рынок тем его участникам, которые вошли в договор о режиме по контролю над ракетными технологиями и выполняют его условия.

В настоящее время более 120 государств осуществляют космическую деятельность; около 20 из них - весьма активно. На Россию приходится 10-12%, на Европу -60%, далее идут США, Китай, Индия.

МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО РОССИИ В КОСМОСЕ

Высокий научно технический и производственный потенциал, который удалось сохранить России в области космического строения и вторичных космических услуг, несмотря на непростые экономические условия последних десяти лет, может сыграть решающую роль в конкурентной борьбе с США и проводящей самостоятельной космическую политику Европой , объединяющей космическую промышленность стран, входящих в ЕС.

Правительство России придает первостепенное значение расширению международного сотрудничества с ее участием в области космоса. Прежде всего речь идет об оказании на коммерческой основе услуг по выведению в космическое пространство зарубежных полезных нагрузок с использованием общепризнанных по своему качеству и надежности российских ракет-носителей.

Стартовые комплексы «Протон» успешно конкурируют за запуски на геостационарную орбиту, пока самую востребованную с точки зрения коммерции, теле - и радиовещаний и связи. Сегодня на низких орбитах, где используются РН «Союз», формируется рынок, в котором России принадлежит значительная доля.

Потенциал России в бизнесе космических запусков может существенно возрасти благодаря коммерческому использованию запаса конверсионных военных ракет-носителей, способных выводить малые и средние полезные нагрузки на низкие, полярные и эллиптические орбиты.

В настоящее время в России ведутся работы по созданию к 2010 году принципиально нового ракетоносителя модульного типа «Ангара».

Россия располагает развитой наземной инфраструктурой для проведения космических запусков. Активная постоянная модернизация космодрома Байконур выводит его с точки зрения работы с клиентами в разряд самого современного космодрома. Открыты для выведения иностранных полезных нагрузок военные космодромы Свободный и Плесецк, а также космический полигон Капустин Яр.

Россия осуществляет, соблюдая свои международные обязательства, экспорт ракетных технологий.

Портфель заказов на поставку отечественной космической техники и услуг на мировой рынок ежегодно превышает 2 млрд. долларов.

В процессе коммерциализации космической деятельности ее активными участниками во все более определяющем масштабе становятся национальные и транснациональные частные и частно-государственные компании. Мировой космический рынок, учитывая его разнообразие, масштабы и научно-техническую специфику, не может не быть ареной конкурентной борьбы. Ее законы приводят к тому, что на отдельных направлениях этого рынка складываются специализированные на конкретных видах деятельности космические коммерческие альянсы. Чаще всего приобретают форму совместных предприятий, что позволяет осуществлять космические проекты в оптимальном режиме, максимально удешевляя их и привлекая лучшие технологии, специалистов, маркетинговый опыт, географические и прочие возможности.

Россия является активным участником космических коммерческих интеграционных процессов. Для продвижения на мировом рынке пусковых услуг российских РН «Союз» создано СП «Старсем». От Франции в него входят две фирмы: «Аэроспасьяль» (ведущий в Европе производитель ракет) и «Арианэспас».

На рынке геостационарной орбиты объединяются усилия американской компании «Локхид – Мартин» и российского Государственного космического научно-производственного центра им. Хруничева для совместного продвижения РН «Протон». Запуски из Плесецка российской ракетой «Рокот» продвигаются совместным российско-германским предприятием «Еврокот».

Широчайшие коммерческие перспективы открываются в процессе практической реализации возможных российско-австралийских проектов, связанных со строительством космодрома на острове Рождества и потенциально – с использованием австралийского полигона в Вумере для запуска коммерческих полезных нагрузок российскими ракетоносителями.

Астронавт" href="/text/category/astronavt/" rel="bookmark">астронавтами Томасом Стаффордом, Вэнсом Брандом и Доналдом Слейтоном.

А уже 17.07.75 в 19:12 ДМВ на 36-м витке КК ”Союз” был состыкован с КК “Аполлон”. Эта дата навсегда вписана в космическую историю земной цивилизации: на околоземной орбите впервые в течение почти двух суток работал орбитальный комплекс из космических кораблей двух стран.

На шестые сутки полета в казахстанской степи приземлился КК ”Союз”, а на девятые сутки “приводнился” в Тихом океане КК ”Аполлон”.

Подобный опыт соединения в космосе такого комплекса космических кораблей, бесценный опыт совместного управления ЦУПами двух стран был беспрецедентен и повторить его удалось только 20 лет спустя, когда в июне 1995 г. состыковались МТКК “Атлантис” и орбитальная станция “Мир”.

Программа ЭПАС/ASTR (Экспериментальный Проект “Аполлон” - “Союз” / Apollo-Soyuz Test Project) в ретроспективе выглядела примерно так.

Инициатором “сближения и стыковки” СССР и США в космической области было НАСА (Национальное агентство США по аэронавтике и космосу).

Главной причиной была экономическая, поскольку с 1965 года бюджет НАСА постоянно сокращался: с 5,2 млрд. (1965) до 3,3 млрд. долларов (1971).

Среди массы проектов (реалистических и “не очень”) появилась идея пойти на мировую с Советами (тем более что, по мнению американцев , реванш за Спутник и Гагарина Америка взяла в июле 1969 г.).

С января 1970 г. началась активная переписка между директором НАСА доктором Томасом О. Пейном и Президентом Академии наук СССР академиком (отметим, что тогда весь советский космос официально шел под ”шапкой” АН СССР, поэтому все дальнейшие переговоры и встречи велись под патронажем Академии наук, хотя в них участвовали в основном специалисты из “космических” предприятий и организаций).

Доктор Пейн в письмах академику Келдышу предлагал провести совместный космический полет со стыковкой американского и советского космических аппаратов. Эта переписка имела успех.

26-27.10.70 в Москве прошла первая встреча советских и американских специалистов в космической области, при этом руководителями были:

От СССР - председатель совета “Интеркосмос” академик;

От США - директор Центра пилотируемых космических полетов НАСА

(позже - Космический Центр Джонсона) Роберт Гилрут.

На этой встрече, в частности, было принято решение о разработке новой американо-советской системы сближения и стыковки. Сотрудник НАСА Келдвелл Джонсон представил первые черновые варианты принципиальной схемы андрогинного стыковочного механизма.

По результатам встречи был принят “Итоговый документ по вопросу обеспечения совместимости систем сближения и стыковки пилотируемых космических кораблей и станций”.

По имеющейся информации, в процессе подготовки и проведения этой встречи рассматривался и вопрос о том, что будет с чем стыковаться.

У американцев выбора практически не было - только КК ”Аполлон”. В свою очередь, СССР мог выбирать, в частности: к этому времени на Байконуре шла к завершению подготовка к запуску станции “Заря” (эта станция в дальнейшем получила официальное название - ”Салют”).

21-25.07. в Хьюстоне проходило совещание представителей и рабочих групп АН СССР и НАСА.

Отметим, что были также созданы следующие три рабочие группы:

1) по проектным техническим решениям, баллистическому обеспечению,

научным экспериментам, взаимодействию ЦУПов (руководители:

от СССР - , заместитель - ;

от США - П. Франк);

2) по системам управления кораблей и средствам слежения

(руководители: от СССР - , от США - Д. Читем, Г. Смит);

3) по стыковочному узлу (руководители: от СССР - ,

от США - Д. Уэйд, Р. Уайт).

В октябре-ноябре 1971 г. состоялись очередные советско-американские переговоры в Москве.

В основу американских предложений были положены рекомендации отчета (250 стр.) фирмы North American Rockwell по контракту НАСА об изучении проблем стыковки американского корабля и советской станции “Салют”. В этом отчете утверждалось, в частности, что эксперимент по стыковке возможен уже в июне 1974 г. Однако, для более гибкой подготовки этот полет рекомендовалось провести в июне 1975 г.

Единственным новым элементом, который надо было разработать, являлась шлюзовая камера со стыковочным узлом для преодоления проблем разности атмосфер КК Аполлон” и станции “Салют”. Отметим также, что к моменту выпуска отчета фирма изготовила макет такой камеры длиной 2,7 м и диаметром 1,4 м.

От СССР для проведения совместного эксперимента (полета) надо было оснастить станцию “Салют” вторым (андрогинным) стыковочным узлом.

Была предложена соответствующая программа полета. Американцы предлагали также провести второй полет (летом 1976 г.). Во время этого полета КК ”Аполлон” должен был находиться в состыкованном со станцией “Салют” состоянии в течение двух недель.

О планах первого (1975 г.) и возможного второго (1976 г.) совместных полетов было решено объявить во время визита Президента США Р. Никсона в СССР (в мае 1972 г.).

29.11-06.12.71 в Москве прошла еще одна встреча советских (под руководством) и американских (под председательством директора Центра MSC доктора Р. Гилрута) специалистов (в частности, по вопросам создания андрогинного периферийного агрегата стыковки - АПАС). Американская сторона официально выдвинула предложение по стыковке КК ”Аполлон” со станцией “Салют”.

На встрече были представлены следующие варианты схем АПАС:

Советский - с тремя направляющими “лепестками”;

Американский - с четырьмя направляющими “лепестками”.

Американцы согласились принять за основу советский вариант АПАС.

Был проведен обмен мнениями о проведении работ по обеспечению совместимости радиосистем стыкующихся аппаратов.

Уже с декабря 1971 г. в США рассматривался вопрос об экипажах.

В апреле 1972 г. в Москве прошла очередная встреча специалистов:

Глава советской делегации - И. о. Президента АН СССР

академик В. Котельников;

Глава американской делегации - зам. директора НАСА доктор Дж. Лоу.

Однако, на этой встрече советская сторона отклонила подготовленный план стыковки КК ”Аполлон” и станции “Салют”. Советская сторона предложила провести в 1975 г. стыковку кораблей “Союз” и “Аполлон”.

По итогам этой встречи был подписан “Итоговый документ по вопросу создания совместимых средств сближения и стыковки пилотируемых космических кораблей и станций СССР и США”. Указанный документ лег в основу межгосударственного соглашения о совместном полете, подписанного 24.05.72 в Москве А. Косыгиным и Р. Никсоном (в присутствии Генерального Секретаря ЦК КПСС).

В июле 1972 г. в Хьюстоне прошла очередная встреча по ЭПАСу, где были созданы еще две совместные советско-американские рабочие группы:

Четвертая (по системам связи и измерениям дальности), руководители:

(от СССР), Р. Дитц (от США);

Пятая (по системам жизнеобеспечения), руководители:

, (от СССР), Р. Смайл, У. Гай (от США).

09-19.10.72 в Москве прошла очередная встреча по ЭПАСу.

Была утверждена дата начала совместного полета - 15.07.75. (Это был первый случай для советской космонавтики, когда дата старта космического корабля объявлялась заранее, да еще за три года до него).

Было принято решение о снижении давления атмосферы в КК ”Союз” после стыковки с КК ”Аполлон” - с 1,0 до 0,7 атм. Такое решение позволяло снизить время десатурации при переходе из КК ”Союз” в КК ”Аполлон” - с 2-х часов до 25 минут. Было решено оставить давление в КК ”Аполлон” прежним (0,35 атм.).

07-15.12.72 в Институте космических исследований (ИКИ) АН СССР (Москва) прошла очередная встреча третьей группы ЭПАС по андрогинному стыковочному узлу. На этой встрече прошли первые испытания советской и американской моделей АПАС масштабом 1:2,5. Первая “стыковка” прошла успешно.

30.01.73 НАСА объявило свои экипажи по программе ЭПАС/ASTR:

Основной экипаж : Томас Стаффорд, Вэнс Бранд, Доналд Слейтон.

Дублирующий экипаж : Алан Бин, Роналд Эванс, Джек Лусма.

Экипаж поддержки : Кэрол Бобко, Роберт Криппен, Роберт Овермайер.

В марте 1973 г. состоялась очередная встреча по ЭПАСу.

Был также согласован график тренировок экипажей:

Первая тренировка - в июле 1973 г. в Центре Джонсона;

Вторая тренировка - в октябре 1973 г. в Звездном городке;

Затем (один раз в 5-6 месяцев) тренировки длительностью до месяца

должны проходить поочередно в американском и советском Центрах.

Была утверждена схема связи между ЦУПами, было решено обменяться во время полета группами управленцев. (Примечание : хотя официально график тренировок экипажей был утвержден лишь в марте 1973 г., взаимный обмен опытом начался уже в 1971 году.)

25.05.73 через АН СССР были объявлены советские экипажи для программы ЭПАС, которые выглядели следующим образом:

первый : Алексей Леонов, Валерий Кубасов;

второй : Анатолий Филипченко, Николай Рукавишников;

третий : Владимир Джанибеков, Борис Андреев;

четвертый : Юрий Романенко, Александр Иванченков.

15.07.2005г . исполняется 30 лет с начала осуществления совместного советско-американского проекта ЭПАС (Экспериментальный Полет “Аполлон” - ”Союз”). Эта программа по праву считается важнейшей в международном освоении космического пространства, но более того она дала путь другим немаловажным программам «Мир» и МКС (о которой речь пойдет дальше).

МКС – ЖИВОЙ КВАРТАЛ В КОСМОСЕ

Самый грандиозный между­народный проект нашего вре­мени - сооружение совмес­тными усилиями многих госу­дарств огромной космической станции МКС, по сути, целого жилого квартала в без­брежном звездном океане, в нескольких сотнях километров от планеты Земля. И первый двадцатитонный "кирпич" в строительство необычного внеземного комплекса заложили Россия и США. Это произошло в конце 90-ых годов прошлого столетия. Ракета "Протон" подняла цилиндрический двенадцатиметровый блок в заоблачные выси и вывела его на орбиту. Изготовила блок Россия, а финансировала ра­боты США.

Официальное название перво­го элемента станции - ФГБ. Что расшифровывается так: функци­ональный грузовой блок. Он является на МКС как бы "складом", хранилищем топлива, оборудо­вания, расходных материалов жизнеобеспечения. Но не только "складом". Еще и источником снабжения электричеством на начальном этапе работы станции. Кроме того, ФГБ имеет собственные двигатели, с помощью которых можно будет под­держивать орбиту комплекса.

Российские специалисты уделя­ли беспрецедентное внимание надежности блока. Чтобы подстра­ховать себя на сто процентов, в Центре имени со­орудили еще один точно такой же летный образец. Провал последней нашей марси­анской экспедиции (катастрофа при старте ракеты со станцией "Марс-96") отчетливо показал, к каким тяжелейшим последствиям приводит экономия на создании дублирующих аппаратов. А ведь в данном случае речь шла не только о нашей программе. От успешного запуска первого космического блока зависела судьба всей междуна­родной станции, огромные затра­ты многих государств и, наконец, престиж, репутация нашей страны. Так что и сверхтщательные испы­тания ФГБ, и создание его "двой­ника" - были отнюдь не лишними мерами.

Что же представляет собой необычный "жи­лой квартал" в космосе? Изображение дает воз­можность представить выведенный комплекс на фоне медленно про­плывающей Земли. Мы видим причудливое, асимметричное нагромождение многотонных цилиндрических кон­струкций разного диаметра и длины, соединенных горизонтально, вертикально, под острым углом и образующих замысловатые разветвленные "цепочки". Все это обрамляют огромные пане­ли солнечных батарей, а также изогнутые в виде "гармошек" и разнонаправленные плоские ра­диаторы, предназначенные для сброса тепла со станции в от­крытый космос. Последний штрих: жилой квартал вдоль и поперек рассекают две ажурные металлические фермы: одна - 90-мветровая горизонтальная (от­носительно воображаемой оси Земли), другая - почти 30-метровая вертикально. Жилые и рабочие зоны располо­жены в центре комплекса. Это - «сердце» станции. А 22 мини-электростанции (солнечные бата­реи) вынесены на периферию. 90-метровая металлическая ферма используется не только для креп­ления на концах поворачиваю­щихся вслед за Солнцем панелей, но еще и как своеобразный «рельсовый путь» для канадской тележ­ки, на которой размещен робот-манипулятор. С его помощью проводилась и проводится сборка деталей и узлов станции в открытом кос­мосе, регламентные и ремонтные работы вне герметичных отсеков. Движением тележки и действия­ми манипулятора управляет опе­ратор с пульта в американском сегменте.

Для сборки и обслуживания российского сегмента МКС был предусмотрен еще один манипу­лятор, который разрабатывался в кооперации со странами ЕКА.

Чтобы представить себе мас­штабы «жилого квартала», при­дется напрячь воображение. Об­щая масса МКС при полном развертывании составляет ни много, ни мало - около 400 тонн. Объем герметич­ных отсеков - 1100 кубических метров. Это примерно десять двухкомнатных московских квар­тир, или как бы целый подъезд пятиэтажного дома.

ФГБ "Заря"

"Протон-К"

Запуск модуля "Заря"

"Индевор"

Доставка модуля "Юнити" с гермоадаптерами РМА-1/2

"Дискавери"

Дооснащение и грузы

"Атлантис"

СМ "Звезда"

"Протон-К"

Запуск служебного модуля "Звезда"

"Атлантис"

Ремонтно-профилактические работы и грузы

"Дискавери"

Доставка секции Z-1 и гермоадаптера РМА-3

"СоюзТМ-ЗГ»

Доставка экипажа МКС-1

"Индевор"

Доставка секции Р6 с панелями солнечных батарей

"Атлантис"

Доставка лабораторного модуля "Дестини"

"Дискавери"

Доставка экипажа МКС-2 и возвращение МКС-1, дооснащение модуля "Дестини"

"Индевор"

Доставка манипулятора "Канадарм-2" и грузов

"Союз ТМ-32"

Полет экипажа ЭП-1

"Атлантис"

Доставка шлюзовой камеры "Квест" и грузов

"Дискавери"

Доставка экипажа МКС-3 и возвращение МКС-2, дооснащение модуля "Дестини"

Запуск стыковочного модуля "Пирс"

"Союз ТМ-33"

Полет экипажа ЭП-2

"Индевор"

Доставка экипажа МКС-4 и возвращение МКС-3, доставка и возвращение грузов

"Атлантис"

Доставка секции S0 и мобильного транспортера

"Союз ТМ-34"

Полет экипажа ЭП-3

"Индевор"

Доставка экипажа МКС-5 и мобильной системы обслуживания, возвращение экипажа МКС-4

"Атлантис"

Доставка секции S1 и грузов

"СоюзТМА-1"

Полет экипажа ЭП-4

"Индевор"

Доставка экипажа МКС-6 и секции Р1 и гру­зов, возвращение экипажа МКС-5

ЭКИПАЖИ МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ

Таблица 2

ЭКИПАЖИ

Экспедиция

Даты полета

Состав экипажа

Длительность, сут, ч, мин, с

31.10.2000-21.03.2001

У. Шеперд (США), и С. К, Крикалев (РФ)

(РФ), Д. Восс и С. Хелмс (США)

, (РФ) и Д. Тито (США)

10.08-17.12.2001

Ф. Калбертсон-мл. (США), и (РФ)

, (РФ) и К. Эньере (Франция)

6.12.2001-19.06.2002

(РФ), К. Уолз и Д. Бёрш (США)

(РФ), Р. Виттори (Италия) и М. Шаттлуорт (ЮАР)

СЕ. Трещев (РФ) и П. Уитсон (США)

30.10-10.11.2002

СВ. Залетин (РФ), Ф. де Винн (ESA, Бельгия) и (РФ)

24.11.2002-4.05.2003

К. Бауэрсокс, Д. Петтит (США) и (РФ)

(РФ) и Э. Лу (США)

В американском сегменте станции наиболее крупными герметичными модулями стали «Хэб» (базовая жилая зона) и «Лэб» (для проведения научных исследова­ний и экспериментов). Специа­листы ЕКА назвали свой модуль «Колумбус». Из трех японских блоков два герметичные. В российском сегменте всего восемь герметичных моду­лей и блоков.

Конечно, деление на «сегмен­ты» во многом условно. Между­народные экипажи, состоящие из космонавтов разных стран, живут как бы единой семьей. Иначе в космосе продер­жаться полгода невозможно. Тем более что много времени приходить­ся проводить в жилых (спальных) зонах, а их на международной станции всего две - на амери­канском и российском базовых модулях.

Остается сказать, что срок су­ществования международной кос­мической станции определен в 15 лет. То есть по крайней мере до 2012 года. Общие затраты пре­высили 100 миллиардов долларов. На МКС получают уни­кальные лекарства, полупровод­никовые материалы для электро­ники, компьютеров, проводят на­блюдения за Землей, экологические исследования, разведку пол­езных ископаемых, а также изу­чение глубин Вселенной, идущих оттуда таинственных излучений...

Впервые в практике коротких экспедиций параллельно выполнялись одиннадцать экспериментов по трем научным программам: российской (два эксперимента), итальянской (четыре эксперимента) и юаровской (пять экспериментов). Контрактные научные программы подготовлены в беспрецедентно короткие сро­ки-за четыре месяца, а не за два года, как ранее.

По российской программе проведены два эксперимента: «Плазменный кристалл» (исследование плазменно-пылевых крис­таллов и жидкостей в условиях микрогра­витации) и «Биотест-1» (исследование симпато-адреналовой активности у челове­ка во время космического полета). По ита­льянской программе «Марко Поло» про­шли четыре эксперимента: CHIRO - исследование здоровья космонавтов в ас­пекте возможного снижения работоспо­собности; VEST - проверка качества новой интегрированной системы одежды для экипажа; ALTEINO - исследование влияния космической радиации на функцио­нальное состояние центральной нервной системы и операторскую работоспособ­ность; BMI - исследование вегетативной регуляции артериального давления и сер­дечного ритма.

По программе ЮАР выполнено пять экспериментов: ССЕ - исследование влия­ния условий микрогравитации на сердеч­но-сосудистую систему человека и характе­ристики скелетных мышц; SPC - исследование процесса кристаллизации растворимого белка; ESCD - исследование развития эмбриональных и стволовых кле­ток в условиях микрогравитации; Education - образовательная программа для школьников по демонстрации эффек­тов невесомости; «Планктон-Линза» - ис­следование влияния различных факторов на биологическую продуктивность океанов в районах шельфового побережья Африки и ее природных ресурсов по данным визу­ально-инструментальных наблюдений из космоса.

Несомненно, самая яркая страница в освоении космоса связана с полетом первого в мире космического туриста.

28 апреля 2001 г. В 11.37 по москов­скому времени с космодрома Байконур со­стоялся поистине исторический старт кораб­ля «Союз ТМ-32»: впервые в космос отпра­вился «турист». Им стал американский мил­лионер Деннис Тито. Наряду с российскими космонавтами - командиром Талгатом Мусабаевым и бортинженером Юрием Батуриным он вошел в состав экипажа посещения МКС.

Однако путь к звездам для «космическо­го путешественника» оказался довольно тер­нистым. Известно, как возражали против старта Денниса Тито за океаном. Причем позиция НАСА была настолько категорична, что наши космонавты, прибывшие в амери­канский Центр подготовки астронавтов в Хьюстоне, в знак солидарности со своим «коллегой » решились даже на однодневный бойкот тренировок. Подобного история кос­монавтики тоже еще не знала.

России удалось-таки отстоять право на полет своего «экскурсанта». Главных аргу­ментов было два. Прежде всего, как не раз подчеркивал глава, в дальнейшем потребуется коммер­циализация МКС для привлечения дополни­тельных средств в эту дорогую программу, а космический туризм - один из наиболее приемлемых вариантов. Во-вторых, с Тито подписан контракт, стоимость которого оце­нивается в кругленькую сумму - 20 милли­онов долларов. Кое-кто уже подсчитал, что секунда его не­дельного путешествия к звездам тянет на тридцать долларов.

Тито на борту МКС поручили роль «по­вара». Причем произошло это довольно слу­чайно. Просто двум командирам Мусабаеву и Усачеву надо было коротко о чем-то посо­вещаться. «Присели» за кофе. Смотрят: все заняты, а Тито как неприкаянный. Он фото­графировал, но станция вошла в тень. В корабле у него были обязанности, а на стан­ции - нет. Вот Мусабаев и предложил: «Да­вай ему поручим заняться буфетом ». Подго­товка к обеду в космосе - дело хлопотное: пока найдешь то, что нужно... Так Деннис с удовольствием принялся сортировать продук­ты: мясо - сюда, рыба - туда, фрукты - сюда и т. д. Он хорошо помог, освободив от этого экипаж.

6 мая 2001 г. Экипаж вер­нулся на Землю. Она встретила ярким сол­нцем и сильным ветром. Спасатели хлопота­ли вокруг Денниса Тито. А он широко улы­бался: «Я побывал в раю». Правда, «рай», длившийся для американского путешествен­ника-миллионера 7 дней 22 часа 4 минуты 3 секунды, давал о себе знать: Деннис попытался самостоятельно выбраться из спускаемого аппарата, но получилось не очень, в отличие от опытных Талгата Мусабаева и Юрия Батурина, его вынесли на руках. Но надо было видеть, с каким энтузиазмом Деннис принялся грызть одно из румяных яблок, которыми по традиции угощают на казахской земле всех прибывших с орбиты...

Как выглядит сегодня МКС, которую на­род уже назвал «космической коммуналкой»? Вот что рассказал Герой России Юрий Ба­турин: «Мне кажется, человеку уютно там, где он может остаться один и быть самим собой. А если ты живешь в аквариуме, то какие туда занавесочки ни приделывай - уютно не будет». По словам космонавтов, станция напоминает трубу длиной в сто метров: модули идут один за другим. Про­сматривается все, и это очень неудобно. Возникают сложности даже в мужском кол­лективе. А что уж говорить, когда есть жен­щина? Такой пример. Экипажи приспособи­лись принимать водные процедуры в функ­ционально-грузовом блоке. Это как раз между американским модулем и нашим. Но там ведь нужно раздеваться. Придумали выход: ребята прикрывают крышки люков. Это значит - «занято». Однако из одного модуля в другой в эти минуты не попадешь. Станция, конечно, еще строится. Не исклю­чено, что позже станет лучше.

Те, кому удалось поработать на россий­ской орбитальной станции «Мир», считают, что она была комфортнее: там модули рас­ходились в разные стороны. Хорош был базовый блок, где космонавты жили. А если нужно отдохнуть от всех - уплывешь куда-нибудь. У американцев на их сегменте вооб­ще нет ни туалетов, никаких средств жизне­обеспечения.

4 февраля 2002 г. НАСА опубликовало правила посещения МКС астронавтами и космическими туристами. Они определяют принципы и критерии отбора любых посети­телей МКС. Несмотря на то, что космические туристы платят миллионы долларов, это
не означает, что на станцию пустят любого. Правонарушителям, лжецам, мошенникам, любителям спиртного, наркоманам и прочим недостойным личностям дороги сюда не будет. Кроме того, потенциальные посети­тели станции должны уметь читать и говорить по-английски, пройти медицинские тесты, в числе которых будут и психологические, а также соответствующую подготовку в центрах подготовки в Звездном городке
и в Хьюстоне.

«Будущее кос­мических полетов зависит от способности частных лиц за плату побывать в космосе». Уже сегодня вокруг строительства МКС воз­никли серьезные финансовые проблемы. Причем трудности испытывает не только Россия, но и Америка, сокращающая свое участие в проекте. Не случайно за океаном не так давно обсуждался вопрос о выделе­нии на «космический туризм» до 30 процен­тов ресурсов.

ЗАКЛЮЧЕНИЕ

В связи с широкомасштабными изменениями, произошедшими за последние десятилетия в международных отношениях: прекращение холодной войны, снижения уровня военного соперничества, общая стабилизация мировой политической ситуации открыли космос для интенсивного мирного освоения. Как следствие активизировались международное разноплановое сотрудничество в области исследования и использования космического пространства, коммерциализация целых направлений космической деятельности, которые еще совсем недавно относились к исключительной прерогативе государств в сфере национальной безопасности.

Неотъемлемыми чертами космического сотрудничества стали конверсия космической техники и технологий, их демилитаризация и применение в мирных целях. В промышленно развитых странах имеет место мощный отток космических технологий в экономику (побочные результаты космической деятельности). Космические технологии представляют собой неистощимый источник ноу-хау, используемых для разработки и производства новых изделий и оказания услуг.

В положительном плане международное сотрудничество в освоении космического пространства работают такие тенденции современных международных отношений, как их глобализация, усиления интеграционных процессов и регионализма. С одной стороны, они ставят перед космической деятельностью задачи воистину глобального порядка, поскольку только космические средства делают возможным собирать, обрабатывать и распространять в масштабах планеты информацию о состоянии глобальных проблем. С другой – они позволяют объединять усилия и изыскивать средства для решения проблем национальных и региональных, обеспечивая экономическую рентабельность.

СПИСОК ЛИТЕРАТУРЫ

1. Журнал «Международная жизнь» №5 2002г. «Риски международной космической деятельности» г. Москва Краснов А.

2. Журнал «Международная жизнь» №2 2003г. «В коммерческом космосе» г. Москва Крутских А.

3. Газета «Труд» «Альфа» - жилой квартал в космосе» от 01.01.01г. г. Москва Головачаев В.

4. Энциклопедия для детей «Аванта+» Техника 2001г. Максимовский В., Транковский С.

5. «Что такое? Кто такой?» Том 2 1993г. Космос

6. Журнал «Гражданская авиация» №5 2003 г. «От апреля до апреля» г. Москва Ячменникова Н.

7. Журнал «Авиасалоны мира» №1 2002 г. «Андромеда без туманности» Громов С.

8. Журнал «Авиасалоны мира» №3 2002 г. «МКС: четвертая экспедиция» Громов С.

9. Журнал «Земля и вселенная» №5 2003 г. «Мкс после первого пятилетия своей работы» по материалам NASA и журнала «Новости космонавтики» за 2002 – 2003 гг.

Высокий научно технический и производственный потенциал, который удалось сохранить России в области космического строения и вторичных космических услуг, несмотря на непростые экономические условия последних десяти лет, может сыграть решающую роль в конкурентной борьбе с США и проводящей самостоятельной космическую политику Европой, объединяющей космическую промышленность стран, входящих в ЕС.

Правительство России придает первостепенное значение расширению международного сотрудничества с ее участием в области космоса. Прежде всего речь идет об оказании на коммерческой основе услуг по выведению в космическое пространство зарубежных полезных нагрузок с использованием общепризнанных по своему качеству и надежности российских ракет-носителей.

Стартовые комплексы "Протон" успешно конкурируют за запуски на геостационарную орбиту, пока самую востребованную с точки зрения коммерции, теле- и радиовещаний и связи. Сегодня на низких орбитах, где используются РН "Союз", формируется рынок, в котором России принадлежит значительная доля.

Потенциал России в бизнесе космических запусков может существенно возрасти благодаря коммерческому использованию запаса конверсионных военных ракет-носителей, способных выводить малые и средние полезные нагрузки на низкие, полярные и эллиптические орбиты.

Россия располагает развитой наземной инфраструктурой для проведения космических запусков. Активная постоянная модернизация космодрома Байконур выводит его с точки зрения работы с клиентами в разряд самого современного космодрома. Открыты для выведения иностранных полезных нагрузок военные космодромы Свободный и Плесецк, а также космический полигон Капустин Яр.

Россия осуществляет, соблюдая свои международные обязательства, экспорт ракетных технологий.

Портфель заказов на поставку отечественной космической техники и услуг на мировой рынок ежегодно превышает 2 млрд. долларов.

В процессе коммерциализации космической деятельности ее активными участниками во все более определяющем масштабе становятся национальные и транснациональные частные и частно-государственные компании. Мировой космический рынок, учитывая его разнообразие, масштабы и научно-техническую специфику, не может не быть ареной конкурентной борьбы. Ее законы приводят к тому, что на отдельных направлениях этого рынка складываются специализированные на конкретных видах деятельности космические коммерческие альянсы. Чаще всего приобретают форму совместных предприятий, что позволяет осуществлять космические проекты в оптимальном режиме, максимально удешевляя их и привлекая лучшие технологии, специалистов, маркетинговый опыт, географические и прочие возможности.

Россия является активным участником космических коммерческих интеграционных процессов. Для продвижения на мировом рынке пусковых услуг российских РН "Союз" создано СП "Старсем". От Франции в него входят две фирмы: "Аэроспасьяль" (ведущий в Европе производитель ракет) и "Арианэспас".

На рынке геостационарной орбиты объединяются усилия американской компании "Локхид - Мартин" и российского Государственного космического научно-производственного центра им. Хруничева для совместного продвижения РН "Протон". Запуски из Плесецка российской ракетой "Рокот" продвигаются совместным российско-германским предприятием "Еврокот".

Широчайшие коммерческие перспективы открываются в процессе практической реализации возможных российско-австралийских проектов, связанных со строительством космодрома на острове Рождества и потенциально - с использованием австралийского полигона в Вумере для запуска коммерческих полезных нагрузок российскими ракетоносителями.

12 апреля - Международный день полета человека в космос - на портале Международного аналитического центра Rethinking Russia вышла статья Самойловской Натальи, заместителя председателя Молодежного отделения Российского Пагуошского комитета при Президиуме Российской Академии наук http://rethinkingrussia.ru/2017/04/космическая-эра-соперничество-и-сотр/ Космическая эра: соперничество и сотрудничество

«Облетев Землю в корабле-спутнике, я увидел, как прекрасна наша планета. Люди, будем хранить и приумножать эту красоту, а не разрушать её!» Ю. Гагарин

СССР и США - первые в космосе

7 апреля 2011 г. Генеральная Ассамблея ООН, «напоминая о том, что 12 апреля 1961 г. состоялся первый полет человека в космос, который совершил Юрий Гагарин – советский гражданин, родившийся в России» , провозгласила 12 апреля Международным днем полета человека в космос. Этот день стал символичной датой, ознаменовавшей начало космической эры для всего человечества.

56 лет прошло с прозвучавшего в эфире знаменитого «Поехали», которому предшествовала титаническая работа выдающихся ученых и инженеров, заложивших основы советской космической науки и промышленности. Путь СССР в космос не переставал удивлять: от полной разрухи послевоенного периода середины 1940-х гг. – к запуску первого искусственного спутника Земли ПС-1 в 1957 г., первых животных – собак Белка и Стрелка – совершивших орбитальный космический полет с успешной посадкой в 1960 г.; и наконец, к первому полету человека в космос в 1961 г.

Через месяц после полета Юрия Гагарина, 5 мая 1961 г., первым американцем в космосе стал А. Шепард, а в 1962 г. Дж. Гленн совершил полет вокруг Земли. Тем не менее, СССР продолжал удерживать первенство: В.И. Терешкова стала первой в мире женщиной-космонавтом в 1963 г.; космонавт В.И. Леонов стал первым человеком, осуществившим выход в открытый космос в1965 г.

Космические успехи СССР стимулировали США к достижению американского лидерства, усиливали элемент соперничества, но при этом сохранялись возможности для сотрудничества. Во время президентства Дж. Кеннеди принятие программы по высадке на Луну во многом объяснялось желанием превзойти СССР. Тем не менее, с американской стороны предпринимались попытки подключить к проекту СССР. В 1962 г. было заключено первое соглашение о сотрудничестве Академией наук СССР и Национальным управлением по аэронавтике и исследованию космического пространства (НАСА) США, которое стало первым шагом к сотрудничеству СССР и США по вопросам космоса. В дальнейшем сотрудничество по линии Академии наук СССР и НАСА будет играть ключевую роль в совместных космических проектах.

Последовавший через несколько месяцев Карибский кризис на этом фоне только благодаря гигантским усилиям руководств двух стран по осознанию собственной ответственности за последствия конфронтации ядерных держав привел к пониманию необходимости сохранения и формирования каналов взаимодействия во избежание катастрофы. При посредничестве ООН стали предприниматься попытки формирования правовой базы относительно возможностей ограничения размещения ядерного оружия в космосе, и в 1967 г. был подписан Договор о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела.

Во время президентства Р. Никсона в 1969 г. в ходе лунной экспедиции корабля «Аполлон-11» американский астронавт Н. Армстронг стал первым человеком, ступившим на Луну. И все же вместо «головокружения от успехов» администрация Р. Никсона предприняла эффективные попытки по налаживанию российско-американского сотрудничества для уменьшения напряженности между СССР и США. Результаты политической воли руководств США и СССР к взаимодействию превзошли все ожидания.

24 мая 1972 г. между СССР и США было подписано межправительственное соглашение, результатом которого стала экспериментальная программа «Аполлон-Союз» (ЭПАС) – первая крупная совместная программа со сближением, стыковкой и взаимным переходом космонавтов космических кораблей двух стран, реализованная в 1975 г. Параллельно, 26 мая 1972 г. был подписан Договор об ограничении систем противоракетной обороны (ПРО), что завершило длительные переговоры об ограничении стратегических вооружений подписанием Временного соглашения между СССР и США о некоторых мерах в области ограничения стратегических наступательных вооружений , но в то же время узаконило вспомогательную военную деятельность в космосе.

После совместных исторических достижений СССР и США, сотрудничество снова пошло на спад, что было обусловлено другими приоритетами администраций Дж. Картера и Р. Рейгана, а также международными политическими событиями, связанными с Афганистаном. Свою роль сыграла программа «Стратегической оборонной инициативы» (СОИ), активно продвигаемая Р. Рейганом, которая привела к активизации работ по космическим вооружениям в СССР вплоть до распада СССР.

Распад СССР устранил принципиальные идеологические противоречия между США и новой Россией, открыл большие возможности на пути к становлению равноправного партнерства. Самой образцовой моделью такого партнерства стало беспрецедентное сотрудничество США, России и европейских партнеров по созданию МКС. Только благодаря общим усилиям удалось завершить прорывной проект в освоении космоса человечеством. Этот проект стал примером и доказательством того, что, несмотря на все сложности, сотрудничество в военно-технологической сфере возможно, взаимовыгодно и открывает огромные возможности для мирного освоения космоса. К сожалению, очередное вмешательство политических событий, не позволило перенести успех сотрудничества на другие области и привело к очередному ухудшению российско-американских отношений.

«Выступая за все человечество»: технологии и осознание

Освоение космического пространства открыло как невероятные возможности для человеческого прогресса, так и беспрецедентные военные технологии, способные уничтожить все живое на Земле. США и Россия по-прежнему остаются самыми мощными ядерными державами в мире, поэтому осознание ответственности перед мировым сообществом является основным посылом к активному сотрудничеству, в первую очередь в двух взаимосвязанных сферах – сфере нераспространения и сфере освоения космического пространства.

Кризис в российско-американских отношениях только усиливает необходимость возвращения к практическому научно-техническому сотрудничеству двух стран в космосе, способному восстановить доверие посредством создания взаимовыгодных партнерских связей. Создание взаимозависимых космических программ может стать основой долгосрочного сотрудничества для возвращения к проблеме создания совместной системы ПРО и ее деполитизации. Немаловажным в этом направлении является интенсификация экспертно-общественного диалога, который часто играл стабилизирующую роль во время кризисных явлений российско-американских отношений.

Анализ опыта сотрудничества России и США в космическом пространстве показывает, что основную роль в разрешении противоречий играет политическая воля руководства стран к поиску компромиссов, нацеленность на совместное решение проблемы имеет наибольшую эффективность. Более того, будет ли развиваться человечество, используя технологические достижение во благо и улучшение качества жизни, или балансировать на грани ядерной угрозы, зависит от желания великих держав преодолевать возникающие трудности с полной ответственностью перед судьбой человечества.


style="margin-top: 20px; margin-bottom: 20px; border: 0px none; font-variant-numeric: inherit; font-stretch: inherit; line-height: 1.6; vertical-align: baseline;"> Новое слово «leonize» появилось в английском языке, созвучное фамилии космонавта В.И. Леонова, означающее выход в открытый космос.

Второй раунд переговоров об ограничении стратегических вооружений будет завершен в 1979 г. подписанием договора Дж. Картером и Л. И. Брежневым

Если сравнить космические исследования со спортивными соревнованиями, то, без сомнения, Советский Союз выиграл первые матчи. Несколько лет потребовалось США для того, чтобы сравнять счёт и в итоге обогнать СССР.

После окончания холодной войны, на смену острому соперничеству пришло сотрудничество между двумя странами в области исследования космоса, которое достигло такого уровня, что сейчас даже можно заявить, что Россия и США играют в одной команде.

С течением времени в космическую гонку энергично включились другие участники, такие как Китай и Европейское космическое агентство.

СССР в обстановке секретности подготовил и осуществил полет Юрия Гагарина. Сообщение об успешном запуске первого человека в космос было передано во время полета космонавта, озадачив планету в цели и американцев в частности. Последние были убеждены в том, что их соперник - отсталая в техническом отношении страна.

Советская власть использовала в пропагандистских целях свое превосходство в исследованиях космического пространства. Положительный образ Гагарина, побывавшего в ряде западных стран и ставшего одним из самых знаменитых людей планеты, также способствовал улучшению образа советских людей в западных странах.

Соперничество между США и СССР в годы холодной войны в значительной степени способствовало развитию космической науки и техники.

Несмотря на то, что обе державы уже обладали необходимыми научно-техническими разработками, именно СССР, несмотря на скептическое отношение американцев, удалось в 1957 году вывести на орбиту первый искусственный спутник Земли.

Месяцем позже советские ученые и конструкторы запустили в космос первое живое существо - собаку Лайку -, которая погибла в ходе полета.

Полет Гагарина 12 апреля 1961 года, подготовленный и осуществленный в обстановке секретности, стал еще одной затрещиной США, которые видели, что всего через несколько недель СССР опять вырвался вперед. Первый пилотируемый корабль «Восток» представлял собой набор тормозных ракет с двумя отсеками: в одном находились приборы, а другой (он был шарообразной формы), в котором размещался космонавт, использовался для приземления.

Шепард, первый американский астронавт

Американцы отправили, наконец, своего гражданина в космос 5 мая 1961 года. Алан Шепард (Alan Shepard) был выбран для полета на корабле Freedom 7, запущенном с помощью ракеты Mercury-Redstone 3 с мыса Канаверал.

Это полет был суборбитальным, длился от силы 15 минут, и ему предшествовала широковещательная пропагандистская кампания, развернутая НАСА.

Через несколько дней президент США Джон Ф. Кеннеди сделал еще один шаг в этом направлении, сообщив в Конгрессе о своем плане высадки человека на Луну до окончания десятилетия.

В августе того же года, СССР совершил еще один рывок, отправив в космический полет на борту корабля «Восток-2» Германа Титова, который провел в космосе целый день. До февраля 1962 года США не могли сравнять счет и осуществить орбитальный полет. Для полета на корабле Friendship 7 в рамках программы Mercury был выбран Джон Гленн (John Glenn).

Гении, о которых мало известно

Но первые пилотируемые полеты эпохи 60-х годов не были бы возможны без научной мысли группы людей, которые в начале XX века разработали многие принципы и приемы, используемые и по сей день. Русский ученый Константин Циолковский, американец Роберт Годдард (Robert Goddard) и немец Герман Оберт (Hermann Oberth) заложили основы современной ракетной техники и в большой степени способствовали тому, чтобы полет в космос стал явью.

Одним из тех ученых, кто обеспечил превосходство СССР на первых этапах космической гонки был Сергей Королев, известный как главный конструктор космических аппаратов.

В последующие годы, ученые и конструкторы обеих держав продолжили совершенствовать и испытывать новые корабли для длительных космических путешествий, такие как Gemini (США) и «Восход» (СССР).

По сравнению с Gemini, знаменитый корабль Apolo имел гораздо более сложную систему стыковки, которая впервые позволила осуществить прямой переход из одного отсека в другой. Благодаря полетам на Луну и голливудским сценаристам, это поколение космических кораблей приобрело небывалую известность.

Космические корабли «Союз» и станция «Мир»

Несмотря на две катастрофы с человеческими жертвами, одним из величайших достижений советской космонавтики были космические корабли «Союз», которые использовались для выполнения самых разных заданий. Конструкция этого корабля, который совершил свой первый полет в 1967 году, постоянно совершенствовалась. Он продолжает использоваться и в наши дни, а также является прототипом для создания кораблей будущего.

Его спускаемый отсек, приземляющийся с помощью парашюта, является единственным элементом, который возвращается на Землю.

Skylab, первая американская космическая станция, была выведена на орбиту в 1973 году. Вскоре в космос стартовала первая советско-американская экспедиция. Проекту под названием «Аполлон-Союз» пришлось решить немало технических проблем, прежде чем он был осуществлен в 1975 году.

Космическая станция «Мир» стала последним крупным проектом (1986-2001) СССР/России и первой орбитальной станцией в мире. В 90-е годы НАСА даже способствовала ее расширению.

Космическим кораблям многоразового использования исполняется 30 лет

Сложные корабли многоразового использования были разработаны НАСА для доставки в космос крупных грузов, с последующим возвращением на Землю для дальнейшего использования. Первый полет космического «челнока» состоялся 12 апреля 1981 года, то есть ровно 30 лет тому назад. А последний состоится в этом году, когда, в соответствии с планами, будут выведены из эксплуатации Endeavour и Atlantis. Последний полет Discovery успешно завершился в марте этого года.

Проведя консультации с экспертной комиссией, президент США Барак Обама объявил в прошлом году об аннулировании проекта Constellation, предусматривающего возобновление полетов на Луну, и завершении программы строительства кораблей многоразового использования. Это спорное и вызвавшее много нареканий решение на несколько лет оставит американских астронавтов без собственных транспортных кораблей для полета на Международную космическую станцию (МКС), пока не будут готовы капсулы Орион.

Будущее космической гонки

Несмотря на то, что нынешняя обстановка сильно отличается от той, что была во времена холодной войны, зависимость от России для полетов на МКС совершенно не воодушевляет многих американцев. Некоторые известные личности, такие как астронавты Нил Армстронг (Neil Armstrong), Юджин Сернан (Eugène Cernan) и Джим Ловелл (Jim Lovell), которые побывали на Луне, подвергли резкой критике Обаму за его новый план деятельности для НАСА, предупредив, что он повлечет за собой «катастрофические последствия для лидерства США» в космической гонке.

Тем не менее, другие астронавты поддерживают это решение, полагая, что корабли многоразового использования таят в себе опасность (Challenger и Columbia взорвались во время полета), и настало время заменить их более надежными и функциональными.

План Обамы также предусматривает привлечение частных предприятий в аэрокосмическую отрасль, которые под контролем НАСА разрабатывают новые транспортные корабли для доставки астронавтов на МКС, а также для будущих полетов.

На прошлой неделе корпорация Space X представила новую мощную ракету Falcon Heavy, способную в будущем выполнить полет до Марса и обратно. Хотя во время своих первых полетов она будет доставлять грузы на МКС, специалисты корпорации надеются, что Falcon Heavy будет также в состоянии брать на свой борт астронавтов.

Следующей серьезной целью НАСА является полет на Марс или какой-нибудь астероид в период до 2035 года. Китай также вплотную занялся исследованием космического пространства. Его ученые и инженеры работают над тем, чтобы отправить космические аппараты на Луну.

И все же современные космические исследования все в меньше мере воспринимаются как сфера деятельности отдельно взятых стран. Все чаще в полетах участвуют астронавты различных стран. За последние годы Европейское космическое агентство, НАСА и Роскосмос совместно выполнили целый ряд задач.

На борту Международной космической станции, которая начала работать в 2000 году, постоянно находятся астронавты. Она стала для них своего рода родным домом, символизируя международное взаимодействие, столь характерное для нынешнего этапа космических исследований.

Развитие исследований с целью использования уникальных возможностей космоса представляет новый, чрезвычайно перспективный вид сотрудничества государств. Исследование космоса идет по двум основным направлениям - фундаментальные исследования, представляющие собой развитие "чистой" науки, способствующие открытию и познанию наиболее общих закономерностей Вселенной; прикладные исследования, представляющие собой разработку и использование космических средств и методов для решения практических задач на Земле и для Земли.

Уровень современных технологий позволяет быстро реализовывать результаты достижений космической деятельности. В связи с исследованием космоса появились новые отрасли человеческих знаний, а именно: космическая астрономия, космическая связь, навигация, метеорология, геодезия, биология, медицина, энергетика и др.

Сотрудничество государств в области космической метеорологии осуществляется через Комитет ООН по космосу, Всемирную метеорологическую организацию - специализированное учреждение ООН, всемирные и региональные Центры погоды в крупнейших городах мира, в том числе в Москве, международные организации (ИНТЕЛСАТ), глобальные и двусторонние программы сотрудничества. Искусственные спутники Земли (ИСЗ) используются для прогнозирования погоды, изучения эволюции климата, температур моря, скорости ветра, возникновения внутренних морских волн, контроля за морским льдом, снежными и дождевыми осадками. Так, своевременное предсказание тайфуна позволяет в 10 раз уменьшить наносимый им ущерб; предсказание погоды через метеоспутники обеспечивает точность прогноза в 85-87% случаев; один метеоспутник за полуторачасовой виток обеспечивает обзор состояния атмосферы между полюсами в полосе шириной до 1,5 тыс. км 2 , в каждый момент времени фиксируя поверхность в 10-12 млн. км 2 .

Хорошие результаты дает краткосрочный мониторинг в случаях стихийных бедствий - лесных пожаров, паводков, схода лавин и др.; долгосрочный мониторинг - за процессами опустынивания, обезлесения, глобальных изменений климата; за подъемом Мирового океана; состоянием геобиологических условий в труднодоступных местностях. США организовали Национальное управление по исследованию состояния океанов и атмосферы; ФАО с 1977 г. контролирует состояние осадков в Африке и пр.

На основе принципов международного права установлен свободный доступ государств к получаемой метеоспутниками информации.



Дистанционное зондирование Земли из космоса успешно используется в геологии, географии, геодезии, сельском хозяйстве и даже археологии. Применение дистанционного зондирования Земли (ДЗЗ) дает большие выгоды при проведении съемок в труднодоступных местах, при осуществлении контроля за состоянием окружающей среды, прогнозировании урожаев, учете стока вод при таянии снегов и ледников, дающих до 90% пресной воды на Земле. Россия использует данные ДЗЗ для получения регулярных весенних и осенних оценок биомассы и кормовой продуктивности своих пастбищных районов. Средствами ДЗЗ обнаружены основные разломы земной коры, что позволяет размещать населенные пункты вне сфер активной подземной деятельности; посредством ДЗЗ предсказаны места залегания полезных ископаемых и др. В 1990 г. СССР представил в ООН информацию «ДЗЗ: программа "Океан" и комплекс "Природа"», о создании двух многоцелевых космических платформ для исследования зеленых ресурсов и мониторинга окружающей среды. Европейское космическое агентство планирует в сотрудничестве с ООН готовить пакеты данных для развивающихся стран Африки в целях регулирования использования морских ресурсов и развития прибрежной зоны.

При очевидных преимуществах деятельность государств в области ДЗЗ имеет свои сложности. Сведения о ресурсах и экономических возможностях зондируемого государства, став объектом свободного доступа, могут быть использованы во вред его национальным интересам - зондирующее государство может монополизировать информацию, полученную способом ДЗЗ, сделать ее коммерческим товаром, что особенно опасно при допуске к космической деятельности частных компаний.

Рабочая группа по ДЭЗ Юридического подкомитета Комитета ООН по космосу завершила обсуждение проекта Принципов, относящихся к дистанционному зондированию Земли при помощи спутников, и положила начало процессу формирования на основе Принципов, имеющих характер морально-политических норм, юридически обязательных обычаев и договорных норм. Положения документа, основываясь на принципах невмешательства государств во внутренние дела друг друга, их суверенного равенства, подтверждают право всех государств на равный доступ к данным ДЗЗ, на установление такого порядка, который обеспечивал бы защиту зондируемого государства от неправового использования информации о его ресурсах, а также устанавливают преимущественное право на доступ к сведениям ДЗЗ для развивающихся стран.



Сотрудничество государств в области космической связи обусловлено как возрастающими потребностями человечества в средствах коммуникации на Земле, так и задачами поддержания связи в космосе между наземными станциями, ИСЗ, орбитальными станциями и пр. Активно развивается спутниковая служба радио- и телевещания, оперативная система прямой передачи программ через ИСЗ; СССР начал пользоваться прямой связью с 1976 г., позже ее стали использовать Франция, Канада, Индия, США, Япония, ФРГ. Применение космических компонентов повысило также надежность морской связи и сократило время на организацию спасательных работ. Государства сотрудничают в области космической связи через международные межправительственные организации МСЭ, ИНТЕЛСАТ, АРАБСАТ и др.; широко используются национальные системы спутниковой связи.

При организации прямого непосредственного вещания с использованием ИСЗ необходимо считаться с тем, что вещание на территорию другого государства через его границы может осуществляться только с его согласия, с учетом его суверенитета и требований принципа невмешательства во внутренние дела. В целях обеспечения правомерного и эффективного использования нового вида связи Генеральная Ассамблея ООН приняла в 1982 г. резолюцию "Принципы использования государствами ИСЗ для международного непосредственного телевизионного вещания".

Резолюция, являясь рекомендательным документом, опирается на основные принципы международного права и специальные принципы отрасли. Она рекомендует государствам осуществлять вещание и пользоваться его благами в интересах мирного сотрудничества; воздерживаться от передач, могущих нанести ущерб делу мира или имеющих антигуманный характер, осуществлять вещание только при ясно выраженном согласии государства, куда направляются передачи; если же государства считают, что передачи нарушают их интересы, они могут противодействовать им в пределах своей юрисдикции в космосе. Государства несут ответственность за всю национальную деятельность в связи с международным непосредственным телевизионным вещанием, включая деятельность правительственных органов, организаций и частных лиц.

Космическая навигация - чрезвычайно перспективная и гуманная область сотрудничества государств по оказанию помощи морским и воздушным судам, терпящим бедствие в любом месте на поверхности Земли. В последние годы простейшими средствами космической навигации - через метеоспутники - ежегодно спасается до 400 судов, т.е. почти половина из терпящих бедствие. В России широко используются ИСЗ на низких орбитах, обслуживающие по нескольку сот судов, буровых платформ и плавучих баз. Для целей ориентирования судов в условиях плохой видимости ИСЗ могут использоваться как небесные тела.

В 1976 г. СССР, США, Канада, Франция договорились о создании Международной организации морской спутниковой связи – ИНМАРСАТ*. Космическая система, включающая ИСЗ и необходимые для выполнения задач спасания наземные станции, другое оборудование, состоит из двух самостоятельных, но полностью совместимых систем - российской КОСПАС (Космическая система поиска аварийных судов и самолетов) и американо-канадо-французского САРСАТ (Поисково-спасательный спутник). Правовые основы сотрудничества государств определяются Конвенцией о международной организации морской спутниковой связи 1976 г., которая, по существу, стала Уставом ИНМАРСАТ. В ней отмечаются исключительно мирный характер и цели организации, принципы равноправия суверенитета и взаимной выгоды, на которых должно строиться сотрудничество входящих в ней государств. Коммерческий характер организации повлиял на процедуру принятия решений высшим органом ИНМАРСАТ - Генеральной Ассамблеей. Они принимаются квалифицированным большинством при подчинении меньшинства большинству.

* К 1996 г. зона действия ИНМАРСАТ, состоящей из 9 спутников, охватывала 95% планеты. С 1 февраля 1999 г. пассажирские суда, грузовые суда водоизмещением более 300 т, самоходные нефтяные буровые платформы должны быть оборудованы специальными устройствами для аварийной связи с ИНМАРСАТ. Панама, под флагом которой ходит наибольшее число торговых судов мира, приняла закон о санкциях для нарушителей. В 1998 г. Конвенция пересмотрена. Запущенный в октября 1998 г. ракетоноситель "АРИАН-5" (Франция) при весе в 740 т имел на борту возвращаемую капсулу весом 2,8 т, а также макет спутника "МАКСАТ-3" весом 2,6 т.

Космическая геология, связанная с использованием данных дистанционного зондирования для прогнозирования и разведки полезных ископаемых Земли, весьма эффективна.

Однако важно и развитие космической геологии в подлинном смысле слова - разработка полезных ископаемых небесных тел и доставка их на Землю. Долгосрочные программы такого рода имеют,. Китай, Япония, США, а реализация подготовительного этапа намечена этими странами на первое десятилетие XXI в.

Космические техника и технология связаны с совершенствованием средств использования космоса. Космическая техника, начало которой было положено запуском первого ИСЗ весом в несколько килограммов, поднялась до уровня создания орбитальных станций, полетов в дальний космос, постоянно действующих транспортных космических систем.

Космическая технология нацелена на использование и освоение уникальных свойств космического пространства и его процессов, которые могут быть использованы в различных областях деятельности на Земле -медицине, биологии, энергетике, металлургии. Космическая технология, используя отсутствие гравитации и почти абсолютный вакуум, может обеспечить бесконтейнерную зональную плавку монокристаллических веществ без ограничений, вызываемых на Земле силой тяжести; сварку электронным лучом; вакуумную очистку доставляемых с Земли металлов. В космосе можно создать до 400 новых сплавов, способных революционизировать современное промышленное производство, например, снизить вес авто- и авиатранспорта, что одновременно снизит затраты горючего и пр.; создание в условиях космоса нового материала для коммуникаций - светопровода - даст человечеству эффективную оптическую связь. Стерильность условий работы в космосе обеспечивает возможность получения новых лекарственных препаратов, в частности для лечения болезней крови*.

* Практика использует также понятие "побочные виды космической техники", которое означает незапланированное или непредусмотренное следствие, результат разработки новой технологии в виде нового оборудования, новых материалов, процессов или специальных знаний более общего характера, а также как вторичное применение в некосмических областях технологии, разработанной главным образом для применения в космической деятельности; например, техника (методы) медконтроля, диагностики, лечения, создания новых материалов. Так, Россия и США применяют для нужд населения созданный для космоса прибор, определяющий качество воздуха и питьевой воды, разрабатывается технология преобразования несъедобного растительного материала (биомассы) в продукты питания: пшеница имеет до 60-65% несъедобной биомассы, которая может быть преобразована в белок при помощи микроорганизмов и ферментов, задействованных в космосе. В 1986 г. во Франции учреждена компания "Новэспас" для целей применения побочных результатов космической деятельности; в России это - Главкосмос и Институт медико-биологических исследований.

Другие виды сотрудничества . В последние годы развиваются новые виды космической деятельности. Так, подсчитано, что энергетические запасы Земли будут исчерпаны уже к концу XXI в.; в связи с этим повышенный интерес вызывает возможность добычи лунного фунта - реголита.

Важным этапом продвижения в космос является использование морского сегмента. За счет энергии вращения Земли экваториальные стартовые морские площадки позволяют увеличить первоначальный импульс запускаемой ракеты почти в полтора раза по сравнению, например, с Байконуром или Канавералом (США). В настоящее время морскую платформу в районе Кении имеют Италия и консорциум "Морской старт" в составе России, США, Украины, Норвегии с местонахождением у Западного побережья США и выходом для запуска в район Гавайских островов. Плавучий космодром принят в эксплуатацию. Россия, владеющая 25% акций, к 2001 г. должна получить около 1 млрд. долл. прибыли, не говоря о других преимуществах.

В начале 1999 г. Россия осуществила уникальный запуск на орбиту немецкого спутника Земли с использованием возможностей своего подводного флота.

В последнее время все активнее заявляет о себе такой вид сотрудничества, как космический туризм. По мере снижения расходов на запуск космических объектов и повышения безопасности полетов аэрокосмические компании США при участии НАСА планируют к началу XXI в. развернуть регулярные полеты и сделать их рентабельными. Планируется обслуживание 2 тыс. туристов ежегодно (стоимость билета около 100 тыс. долл.) с длительностью пребывания в космосе и выходом на суборбиту в течение 6 дней.

В 1999 г. Международное Морское бюро - организация, объединяющая представителей частных транспортных компаний, приняло решение о создании системы слежения со спутников за движением океанских судов с целью пресечения морского пиратства. Каждое судно предполагается снабдить скрытым передатчиком, сигналы которого через спутник будут приниматься наземной станцией службы слежения в Малайзии.

Наконец, во второй половине 1999 г. американские исследователи планируют при помощи 72-метрового радиотелескопа (Евпатория, Украина) установить контакт с неизвестными внеземными цивилизациями. Сигнал должен достичь намеченные пункты в четырех звездных системах, схожих с нашей, к 2050 г. Первая попытка была предпринята в 1974 г. из Пуэрто-Рико.

В целях интенсификации сотрудничества государств в космосе 29 января 1998 г. в Вашингтоне правительствами России, США, Японии, Канады и Европейским космическим агентством (ЕКА) было подписано Соглашение о создании международной космической станции гражданского назначения. Участники Соглашения договорились объединить усилия в конструировании, выводе на орбиту и использовании пилотируемой космической станции. Соглашение, как указано в преамбуле, соответствует принципам Договора по космосу 1967 г., создает правовую основу для мирного сотрудничества государств, гарантирует каждому участнику права на использование станции и управления ею (ст. 1), регистрацию предоставляемых им орбитальных элементов в качестве своего космического объекта и сохранение юрисдикции над ним и своими гражданами, составляющими персонал станции (ст. 5).

Для усиления коллективного компонента в управлении и использовании станции участники обеспечивают доступ друг друга к своим элементам и возможность их использования при условии, что такое использование является мирным (ст. 9, п. 3 "в").

Таким образом, космические виды сотрудничества знаменуют новую эру в развитии цивилизации, в освоении богатств космоса. Международное право должно своевременно определять правовые рамки сотрудничества, с тем чтобы обеспечить использование нового вида осваиваемой человечеством территории в соответствии с принципами международного права, под международным контролем, на благо всего человечества.

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

1. Назовите виды территорий, составляющих космос. Определите вид режима, регулирующего их правовой статус, его источники.

2. Укажите различия в режиме естественных и искусственных небесных тел.

3. Назовите основные принципы международного права, распространяющиеся на космическую деятельность государств, специальные принципы отрасли международного космического права.

4. Каково значение института регистрации космических объектов, запускаемых государствами, международными организациями?

5. Определите специфику ответственности в отрасли международного космического права.

6. Каковы основные признаки абсолютной ответственности за нанесение ущерба космическим объектом?

ЛИТЕРАТУРА

Верещетин B.C. Правовые проблемы полета человека в космос М 1986.

Курс международного права. Отрасли международного права. Т. 5. М., 1992.

Международное космическое право. М., 1985.

Новое в космическом праве (на пути к международному частному космическому праву). М., 1990.

Словарь международного космического права. М., 1992.



Понравилась статья? Поделитесь с друзьями!