Необычные источники энергии. Десять самых необычных альтернативных источников энергии Устройство необычайной мощности которое давно


Альтернативные источники энергии постепенно выходят на первый план, а некоторые страны даже заявили, что в обозримом будущем планируют перевести свою инфраструктуру исключительно на них. Благо, помимо солнечных панелей, ветряков и гидроэлектростанций есть еще множество интересных вариантов , о которых мы и расскажем в этом обзоре.



Helius Energy построила первую в мире электростанцию, которая работает от побочных продуктов дистилляции шотландского виски. Ведь при этом процессе остается огромное количество углеводных и белковых масс, которые и можно, сжигая, преобразовывать в энергию. В качестве партнера в этом проекте выступил конгломерат производителей Rothes Whisky.




Компания Soccket Inc. создала футбольный мяч, который одновременно является и небольшой электростанцией, вырабатывающей энергию в те моменты, когда футболисты бьют по объекту ногой. Несколько часов игры, и работа светодиодной лампы на целый вечер обеспечена! Идеальный вариант для сельской глубинки в развивающихся странах Африки и Азии.




Уже несколько десятилетий существует технология, позволяющая вырабатывать энергию на основе разницы между температурой воды на поверхности океана и в его глубинах. А через несколько лет у южных берегов Китая появится самая большая в мире электростанция, работающая по этой технологии (OTEC). Создаст ее всемирно известная компания Lockheed Martin.




Ученые из университета в швейцарском городе Берн разработали миниатюрные турбины, которые, будучи помещенными в кровеносные сосуды человека, будут давать энергию для работы его электрического кардиостимулятора.




В рамках конкурса eVolo 2013 группой китайских архитекторов был представлен проект небоскреба VolcanElectric Mask, который должен расположиться на склоне вулкана. Да и энергию для функционирования это здание будет получать из раскаленной магмы, подступающей к поверхности Земли.




Британская компания Geneco разработала технологию, позволяющую получать метан из человеческих фекалий, и оснастила ею автомобиль VW Beetle, дав ему новое имя – VW Bio-Bug.




Японская компания East Japan Railway Company, один из лидеров пассажирских перевозок в Стране Восходящего Солнца, решила оснастить каждый свой турникет генератором электроэнергии. Так что пассажиры, проходящие через них, сами того не осознавая, будут вырабатывать электричество.




Специалисты из австралийской компании BioPower Systems, решили обратить внимание на множество подводных течений, опоясывающих Австралию. В результате этого они и создали проект электростанции BioWawe, которая будет использовать данные потоки воды для производства электроэнергии.




Giraffe Street Lamp – это качели, катаясь на которых, каждый человек сможет сделать мир немного ярче и светлее. Дело в том, что эти качели являются одновременно и генератором электричества для уличного фонаря, с которым они совмещены. Впрочем, у него есть и сторонний источник энергии, питающий лампы в то время, когда объект находится в состоянии покоя.




В Гамбурге несколько недель назад открылось первое в мире здание, которое получает энергию от микроскопических зеленых водорослей, которые находятся в стенах и окнах этого архитектурного сооружения. И каждое его окно представляет собой небольшой био-реактор, производящий электричество за счет фотосинтеза.


1. Летающий ветрогенератор

Buoyant Airborne Turbine (BAT), огромный аэростат с ветряной турбиной, может набирать высоту до 600 метров. На этом уровне скорость ветра значительно выше, чем у поверхности земли, что позволяет удвоить выработку энергии.

2. Волновая электростанция Oyster

Желтый поплавок — надводная часть насоса, который находится на 15-метровой глубине в полукилометре от берега. Используя энергию волн, Oyster («Устрица») перегоняет воду на вполне обычную гидроэлектростанцию, расположенную на суше. Система способна вырабатывать до 800 кВт электроэнергии, обеспечивая светом и теплом до 80 домов.

3. Биотопливо на основе водорослей

4. Солнечные батареи в оконных стеклах

Стандартные солнечные батареи преобразуют энергию Солнца в электричество с эффективностью 10−20%, а их эксплуатация довольно затратна. Но недавно ученые из университета Калифорнии разработали прозрачные панели на основе относительно недорогого пластика. Батареи черпают энергию из инфракрасного света и могут заменить обычные оконные стекла.

5. Вулканическое электричество

Принцип работы геотермальной электростанции такой же, как и у теплоэлектростанции, только вместо угля используется тепло земных недр. Для добычи этого вида энергии идеальны районы с высокой вулканической активностью, где магма подходит близко к поверхности.

6. Сферическая солнечная батарея

Даже в облачный день заполненный жидкостью стеклянный шар Betaray работает в четыре раза эффективнее, чем обычная солнечная батарея. И даже в ясную ночь сфера не дремлет, извлекая энергию из лунного света.

7. Вирус М13

Ученым Национальной лаборатории имени Лоуренса в Беркли (Калифорния) удалось модифицировать вирус-бактериофаг М13 так, что он создает электрический заряд при механической деформации материала. Чтобы получить электричество, достаточно нажать на кнопку или провести пальцем по дисплею. Впрочем, пока максимальный заряд, который удалось получить «инфекционным путем», равен возможностям четверти микропальчиковой батарейки.

8. Торий

Торий — радиоактивный металл, похожий на уран, но способный давать в 90 раз больше энергии при распаде. В природе он встречается в 3-4 раза чаще, чем уран, а всего один грамм вещества по количеству выделяемого тепла эквивалентен 7400 галлонам (33640 литрам) бензина. 8 грамм тория хватит, чтобы автомобиль мог ехать более 100 лет или 1,6 млн км без дозаправки. В общем, компания Laser Power Systems объявила о начале работ над ториевым двигателем. Посмотрим-с!

9. Микроволновый двигатель

Как известно, космический корабль получает импульс для взлета за счет выброса и сгорания ракетного топлива. Основы физики попытался перечеркнуть Роджер Шойер. Его двигатель EMDrive (мы о нем писали) не нуждается в горючем, создавая тягу с помощью микроволн, которые отражаются от внутренних стенок герметичного контейнера. Впереди еще долгий путь: силы тяги такого мотора не хватает даже для того, чтобы сбросить со стола монету.

10. Международный экспериментальный термоядерный реактор (ITER)

Предназначение ITER— воссоздать процессы, происходящие внутри звезд. В противовес расщеплению ядра речь идет о безопасном и безотходном синтезе двух элементов. Получив 50 мегаватт энергии, ITER вернет 500 мегаватт — достаточно, чтобы обеспечить электричеством 130 000 домов. Запуск реактора, базирующегося на юге Франции, произойдет в начале 2030-х, а подключить его к энергетической сети получится не раньше 2040 года.

Уголь, нефть, газ, ядерное топливо – все эти традиционные источники энергии давно знакомы человечеству и используются с разной степенью эффективности. Поиск альтернативных источников энергии ведется по целому ряду причин. Это и экономия затрат на тепло- и электроснабжение, и улучшение экологической ситуации, и ограниченность имеющихся энергетических ресурсов.

Сегодня предлагаем изучить наш Топ-10 альтернативных источников энергии . Далеко не все источники когда-либо получат широкое распространение, однако, некоторые уже обеспечивают энергией миллионы людей по всей планете.

10. Энергия ветра

Ветрогенераторы давно и довольно успешно применяются в Дании, Нидерландах, Великобритании, Китае и Индии. Дания около 25% энергии получает именно за счет ветряных установок. По оценкам аналитиков Россия также могла бы применять энергию ветра, обеспечивая до 10% своих энергетических потребностей.

9. Биотопливо

Биодизель и биоэтанол можно получать из различных продуктов: древесных отходов, соломы, биогаза, растительных масел, водорослей. В России основной продукт для производства биодизеля – рапсовое масло. В странах Евросоюза работает более 245 заводов по производству биодизеля.

8. Управляемый термоядерный синтез

Процесс получения более тяжёлых атомных ядер из более лёгких может служить источником энергии в том случае, если является управляемым. В современной атомной энергетике используется реакция распада, а не синтеза. В настоящее время управляемый ядерный синтез для получения энергии на практике не используется, так как остается открытым вопрос рентабельности и безопасности такой деятельности.

7. Энергия морских приливов

На берегах морей, где гравитационное воздействие луны вызывает изменение уровня вода дважды в сутки, строятся приливные электростанции (ПЭС). На сегодняшний день ПЭС работают в Великобритании, Франции, Канаде, Китае и Индии. В России с 1968 года функционирует экспериментальная ПЭС на побережье Баренцева моря.

6. Космическая энергетика

Получение энергии в фотоэлектрических элементах, вынесенных на орбиту Земли, считается перспективным источником энергии. Однако некоторые ученые уверяют, что масштабная реализация подобных проектов приведет к глобальному потеплению. В настоящее время на практике получение энергии таким способом с доставкой ее на Землю не проводится.

5. Тепло человеческого тела

В Стокгольме и Париже власти намерены использовать тепло, которое выделяют пассажиры вагона метро во время поездки. Так, в Париже владелец жилого дома, расположенного над веткой метрополитена, разработал проект обогрева 17 квартир за счет тепла тел пассажиров.

4. Геотермальная энергетика

Термальные источники имеются на территории многих стран. В Центральной Америке, Филиппинах, Исландии их научились использовать для отопления. В этих же районах работают и геотермальные электростанции.

3. Водородная энергетика

Водород считается экологически чистым источником энергии. Однако для производства водорода на сегодняшний день требуется больше энергии, чем можно получить при его использовании. Поэтому эффективным источником энергии водород пока не стал.

2. Энергия морских и океанских волн

Страны, имеющие протяженную береговую линию, вполне могут покрывать часть своих энергетических потребностей за счет морской волны. По расчетам аналитиков, Великобритания может получить таким образом до 5% требуемой электроэнергии. С этой целью именно в Соединенном Королевстве был построен волновой генератор Oyster.

1. Энергия солнца

Более чем в 30 странах мира работают солнечные электростанции, а сотни тысяч домашних хозяйств обеспечивают себя энергией за счет установки солнечных батарей. Кстати, самая мощная солнечная электростанция в мире – «Перово», расположенная в Крыму. Солнце, пожалуй, — самый популярный среди альтернативных источников энергии на сегодняшний день.

13 открытая юношеская

научно-исследовательская конференции

имени С.С. Молодцова

Секция физика __

Исследовательская работа

Природное электричество

Гарифуллин Ильяс

4 д класс, МБОУ «Гимназия №2» имени Баки Урманче, г. Нижнекамск

Научные руководители:

Нугманова Алсу Саримовна,

Учитель физики высшей кв. категории

Петрунина Назиля Расимовна,

Учитель начальных классов первой кв. категории

Нижнекамск, 2015 г.

1 Введение……………………………………………………………………………………

I . Теоретическая часть

1.Источники электрического тока. История создания батарейки……………………….3

2. Традиционные источники электрического тока.…..……..………………………….…4

3. «Живые электростанции»…………………………………………………….…………..5 4.Нетрадиционные источники электрического тока ……………………………………..6

II . Экспериментальная часть

1.Об использовании фруктов и овощей для получения электричества………………….6

2.Получение необычного источника тока……………………………………………….7-8

3. Заключение ………………………………………………………………………………..9

Использованная литература………………………………………………………………10

Введение

Наша работа посвящена необычным источникам энергии. В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами .

Современная жизнь просто немыслима без электричества - только представьте существование человечества без современной бытовой технике, аудио- и видеоаппаратуры, вечера со свечой и лучиной. Процесс получения и транспортировки электроэнергии трудоемок и дорогостоящ. Для выработки электричества необходимо топливо, а оно когда-нибудь закончится: и нефть, и уголь, и даже уран. Выход может быть в создании вечного термоядерного реактора, а получится ли его создать, неизвестно. На что человечеству надеяться? Можно на возобновляемые ресурсы - солнце, ветер, воду. Но оказывается, и, помимо их, в окружающей среде полно источников почти даром!

В настоящее время в России наметилась тенденция роста цен на энергоносители, в том числе и на электроэнергию. Поэтому вопрос поиска дешёвых источников энергии имеет актуальное значение. Перед человечеством стоит задача освоения экологически чистых, возобновляемых, нетрадиционных источников энергии.

Впервые о нетрадиционном использовании фруктов мы прочитали в книге Николая Носова. По замыслу писателя, Коротышки Винтик и Шпунтик, жившие в Цветочном городе, создали автомобиль, работающий на газировке с сиропом. В результате нам захотелось узнать как можно больше об электричестве.

Исходя из этого, мы выбрали следующую тему исследования «Природное электричество».

Целью моей работы является выявление различных способов получения электроэнергии и экспериментальное подтверждение некоторых из них.

В начале исследования мной была выдвинута следующая гипотеза: если электростанции получают электрический ток, используя природные ресурсы, то возможно ли получение тока с помощью других необычных источников тока.

Задачи исследования:

    Изучить и проанализировать научную и учебную литературу об источниках электрического тока.

    Познакомиться с устройством батарейки и его изобретателями.

    Ознакомиться с ходом работы по получению необычного источника тока.

    Получить необычные источники тока.

Методы исследования: анализ научной и учебной литературы, экспериментальный метод, метод обработки результатов, метод сравнения.

I . Теоретическая часть.

1.Источники электрического тока. История создания батарейки.

Первый химический источник электрического тока был изобретен случайно, в конце 17 века итальянским ученым Луиджи Гальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки. Теоретическое объяснение наблюдаемому процессу Гальвани дал неверное.

Опыты Гальвани стали основой исследований другого итальянского ученого - Алессандро Вольта. Он сформулировал главную идею изобретения. Причиной возникновения электрического тока является химическая реакция, в которой принимают участие пластинки металлов. Для подтверждения своей теории Вольта создал нехитрое устройство. Оно состояло из цинковой и медной пластин погруженных в емкость с соляным раствором. В результате цинковая пластина (катод) начинала растворяться, а на медной стали (аноде) появлялись пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток. Несколько позже ученый собрал целую батарею из последовательно соединенных элементов, благодаря чему удалось существенно увеличить выходное напряжение.

Именно это устройство стало первым в мире элементом питания и прародителем современных батарей. А батарейки в честь Луиджи Гальвани называют теперь гальваническими элементами.

Всего через год после этого, в 1803 году, русский физик Василий Петров для демонстрации электрической дуги собрал самую мощную химическую батарею, состоящую из 4200 медных и цинковых электродов. Выходное напряжение этого монстра достигало 2500 вольт. Впрочем, ничего принципиально нового в этом «вольтовом столбе» не было.

2. Традиционные источники электрического тока.

Прежде чем электрический ток попадет к нам в дом, он пройдет большой путь от места получения тока до места его потребления. Ток вырабатывается на электростанциях. Электростанция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции (ТЭС), гидроэлектрические станции (ГЭС), гидроаккумулирующие электростанции, атомные электростанции (АЭС). . А еще бывают «живые электростанции».

3. «Живые электростанции».

В природе есть группа животных, которых мы называем «живыми электростанциями».

Животные очень чувствительны к электрическому току. Даже незначительной силы ток для многих из них смертелен. Лошади погибают даже от сравнительно слабого напряжения в 50-60 вольт. А есть животные, которые не только обладают высокой устойчивостью к электрическому току, но и сами вырабатывают ток в своём теле. Это рыбы - электрические угри, скаты, и сомы. Настоящие живые электростанции!

Электрические угри, водящиеся в пресных водах Гвианы и Бразилии, могут вырабатывать электричество напряжением до 300 вольт, в зависимости от состояния и величины рыбы. Эти рыбы достигают 2-3 метров длины и веса 15-20 кг.

Источником тока служат особые электрические органы, расположенные двумя парами под кожей вдоль тела - под хвостовым плавником и на верхней части хвоста и спины. По внешнему виду такие органы представляют продолговатое тельце, состоящее из красновато-желтого студенистого вещества, разделённого на несколько тысяч плоских пластинок, ячеек-клеток, продольными и поперечными перегородками. Что-то вроде батареи. От спинного мозга к электрическому органу подходит более 200 нервных волокон, ответвления от которых идут к коже спины и хвоста. Прикосновение к спине или хвосту этой рыбы вызывает сильный разряд, который может мгновенно убить мелких животных и оглушить крупных животных и человека. Тем более, что в воде ток передаётся лучше. Оглушённые угрями крупные животные нередко тонут в воде.

Электрические органы – средство не только для защиты от врагов, но и для добычи пищи. Охотятся электрические угри ночью. Приблизившись к добыче, произвольно делает разряд своих «батарей», и всё живое – рыбы, лягушки, крабы - парализуются. Действие разряда передаётся на расстояние в 3-6 метров. Ему остаётся только заглотать оглушённую добычу. Израсходовав запас электрической энергии, рыба долгое время отдыхает и пополняет её, «заряжает» свои «батареи».

Рыбы - живые электростанции опасны. Электрические скаты - торпедо, которых много в Средиземном море, могут в течение 10-15 секунд давать до 150 разрядов в секунду с напряжением до 80 вольт. В некоторых странах люди прежде пользовались разрядами скатов для лечебных целей. В Древнем Риме врачи держали скатов у себя дома в больших аквариумах. Даже сейчас в средиземноморских странах можно видеть старичков, бродящих в мелкой воде в надежде на излечение от ревматизма разрядами электрического ската.

Кое - что об электрических рыбах

Рыбы используют разряды:

    чтобы освещать свой путь;

    для защиты, нападения и оглушения жертвы;

    передают сигналы друг другу и обнаруживают заблаговременно препятствия.

4. Нетрадиционные источники электрического тока.

Кроме традиционных источников тока существует множество нетрадиционных источников. Оказывается, электричество можно практически получать из всего, что угодно. Нетрадиционные источники электрической энергии, где невосполнимые энергоресурсы практически не тратятся: ветроэнергетика, приливная энергетика, солнечная энергетика.

Есть и другие предметы, которые на первый взгляд не имеют никакого отношения к электричеству, однако могут служить источником тока.

II . Экспериментальная часть.

1.Об использовании фруктов и овощей для получения электричества.

Изучив литературу, я узнал, что электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и, самое интересное, из обычного картофеля – сырого и вареного. Именно Израильские ученые исследователи в качестве источника энергии необычной батарейки предложили использовать вареный картофель, так как мощность устройства в этом случае по сравнению с сырым картофелем увеличится в 10 раз. Такие необычные батареи способны работать несколько дней и даже недель, а вырабатываемое ими электричество в 5-50 раз дешевле получаемого от традиционных батареек и, по меньшей мере, вшестеро экономичнее керосиновой лампы при использовании для освещения.

Индийские ученые решили использовать фрукты, овощи и отходы от них для питания несложной бытовой техники. Батарейки содержат внутри пасту из переработанных бананов, апельсиновых корок и других овощей или фруктов, в которой размещены электроды из цинка и меди. Новинка рассчитана, прежде всего, на жителей сельских районов, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки необычных батареек.

2.Получение необычного источника тока.

Ученые утверждают, что если у вас дома отключат электричество, вы сможете некоторое время освещать свой дом при помощи лимонов. Ведь в любом фрукте и овоще есть электричество, поскольку они заряжают нас, людей, энергией при их употреблении.

Но мы не привыкли верить всем на слово, поэтому решили проверить это на опыте.С целью доказательства гипотезы о том, что различные фрукты и овощи могут служить источниками электричества, мною было проделано несколько экспериментов. Были использованы фрукты: лимон, яблоко, огурец соленый, картофелину сырую и вареную;

    несколько медных пластин из набора по электростатике – это будет наш положительный полюс;

    оцинкованные пластины из того же набора – для создания отрицательного полюса;

    провода, зажимы;

    милливольтметры, вольтметры

    амперметры.

Большинство фруктов содержит в своем составе слабые растворы кислот. Именно поэтому их можно легко превратить в простейший гальванический элемент. Прежде всего, мы зачистили медный и цинковый электроды с помощью наждачной бумаги. А теперь достаточно их вставить в овощ или фрукт и получается «батарейка».

Результаты эксперимента мы занесли в таблицу:

Основа батарейки

Напряжение на электродах, В

Огурец соленый

Банан (с кожурой)

Банан (без кожурой)

Мандарин

Апельсин

Картофель

Вареный картофель

Вывод: Напряжение на электродах разное. Самое большое напряжение в соленых огурцах- 1,2 В. Если использовать не сырую, а вареную картошку, то напряжение тоже больше. Банан с кожурой дает результат 0,4 В, а банан без кожуры - 0 В. Значит, чтобы получить напряжение, банан должен быть с кожурой!

Вытаскивая медную и цинковую пластины из овощей и фруктов, мы обратили внимание на то, что они сильно окислились. Это значит, что кислота вступала в реакцию с цинком и медью. За счет этой химической реакции и протекал очень слабый электрический ток. Аналогично можно получить электроэнергию из лимона и яблок, если вы используете цитрус, попытайтесь воткнуть гвоздь и проводок в одну и ту же дольку.

Наблюдали за нашими «вкусными» батарейками мы в течение некоторого времени.

Сделали вывод : постепенно напряжение на всех «вкусных» батарейках уменьшается. До сих пор еще есть напряжение на яблоке и вареном картофеле. Но именно соленые огурцы мы хотели оставить до утра. Хотели узнать, насколько уменьшится ток, за ночь. Вот и результат: было 1,2 В, а к утру через 15 часов показывает также 1,2 В. В итоге мы пришли к выводу, чтобы уменьшился ток нужно наблюдать больше времени.

Результаты измеренного напряжения на батарейках занесли в таблицу:

Напряжение на электродах, В

Через 15 часов

Огурец соленый

Вывод: Ток постепенно уменьшается. Ток слишком мал, для того чтобы загорелась лампочка. Поэтому мы планируем в дальнейшем выяснить, какими способами можно увеличить силу тока в цепи и заставить лампочку светиться.

Музыкальный горшочек. А вы знаете, что цветочные горшочки умеют петь. Я этот эксперимент хочу вам предложить . (ПОКАЗ эксперимента с горшком).

Итак, после проведения опытов, я узнал, что электрический ток можно получить из фруктовых плодов и из овощей, а также бывают поющие цветки. Каждый фрукт и овощ вырабатывает разный по силе и напряжению электрический ток.

Выводы:

1. Изучили и проанализировали научную и учебную литературу об источниках электрического тока.

2.Познакомились с устройством батарейки и его изобретателями.

3. Изготовили овощные и фруктовые батарейки и получили необычные источники тока .

4.Научились определять напряжение внутри «вкусной» батарейки и силу тока создаваемую ею.

5.Обнаружили, что напряжение на зажимах батареи составленной из нескольких овощей растет, а ток уменьшается.

3. Заключение.

Для достижения цели моей работы решены все поставленные задачи исследования.

Анализ научной и учебной литературы позволил сделать вывод о том, что вокруг нас очень много предметов, которые могут служить источниками электрического тока.

В ходе работы рассмотрены способы получения электрического тока. Я узнал много интересного о традиционных источниках тока - различного рода электростанциях.

Я с помощью опыта показал, что можно получить электроэнергию из некоторых плодов, конечно, это небольшой ток, но сам факт его наличия дает надежду, что в последующем такие источники можно будет использовать в своих целях (зарядить MP 3-плейер, мобильный телефон и др.). Одновременное действие несколько таких батареек позволяет запустить стенные часы, пользоваться электронной игрой и карманным калькулятором. Такие батареи могут использовать жители сельских районов страны, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки биобатареек. Использованный состав батареек не загрязняет окружающую среду, как гальванические (химические) элементы, и не требует отдельной утилизации в отведенных местах.

Мою работу можно будет продолжить: найти другие необычные источники тока.

Использованная литература:

1. Горев Л. А. Занимательные опыты по физике. М., «Просвещение», 1974

2. Перышкин А. В. Физика 8 кл.: Учебник для общеобразовательных учебных заведений – М.: Дрофа, 2002.

3. Энциклопедический словарь юного физика. -М.: Педагогика, 1991г О. Ф. Кабардин.

4.Энциклопедический словарь юного техника. -М.: Педагогика, 1980г

5.Справочные материалы по физике. -М.: Просвещение 1985.

6 Журнал «Наука и жизнь», №10 2004г.

7 А. К. Кикоин, И.К. Кикоин. Электродинамика. -М.: Наука 1976.

8 Кирилова И. Г. Книга для чтения по физике.- Москва: Просвещение 1986.

9 Журнал «Наука и жизнь», №11 2005г.

10. Н.В.Гулиа. Удивительная физика.- Москва: «Издательство НЦ ЭНАС» 2005

Интернет- ресурс.

Ни для кого не секрет, что используемые сегодня человечеством ресурсы конечны, более того, их дальнейшая добыча и использование может привести не только к энергетической, но и к экологической катастрофе. Традиционно используемые человечеством ресурсы — уголь, газ и нефть — закончатся уже спустя несколько десятилетий, и меры нужно принимать уже сейчас, в наше время. Конечно, можно надеяться, что мы вновь найдем какое-либо богатое месторождение, так же как было в первой половине прошлого века, однако ученые уверены, что таких крупных залежей уже нет. Но в любом случае даже открытие новых месторождений только отсрочит неизбежное, необходимо найти способы производства альтернативной энергии, и переходить на возобновляемые ресурсы, такие как ветер, солнце, геотермальная энергия, энергия водных потоков и другие, а наряду с этим нужно продолжать разработки энергосберегающих технологий.

В этой статье мы рассмотрим несколько самых перспективных, на взгляд современных ученых, идей, на которых будет строиться энергетика будущего.

Солнечные станции

Люди издавна задумывались над тем, возможно ли Под солнечными лучами нагревали воду, сушили одежду и глиняную посуду перед ее отправкой в печь, однако эти способы нельзя назвать эффективными. Первые технические средства, преобразующие солнечную энергию, появились еще в 18 веке. Французский ученый Ж. Бюффон показал опыт, в котором ему удалось с помощью большого вогнутого зеркала в ясную погоду воспламенить сухое дерево с расстояния около 70 метров. Его соотечественник, известный ученый А. Лавуазье, применял линзы, чтобы концентрировать энергию солнца, а в Англии создали двояковыпуклое стекло, которое, фокусируя солнечные лучи, расплавляло чугун всего за несколько минут.

Естествоиспытатели проводили множество опытов, которые доказывали, что солнца на земле возможно. Однако солнечная батарея, которая превращала бы солнечную энергию в механическую, появилась сравнительно недавно, в 1953 году. Ее создали ученые из Национального аэрокосмического агентства США. Уже в 1959 году солнечную батарею впервые применили для оснащения космического спутника.

Возможно уже тогда, осознав, что в космосе такие батареи гораздо эффективнее, ученым пришла идея о создании космических солнечных станций, ведь за час солнце вырабатывать столько энергии, сколько все человечество не потребляет и за год, так почему же не использовать это? Какой будет солнечная энергетика будущего?

С одной стороны кажется, что использование солнечной энергии идеальный вариант. Однако себестоимость огромной космической солнечной станции очень высока, да и к тому же она будет дорога в эксплуатации. Со временем, когда будут введены новые технологии по доставке грузов в космос, а также новые материалы, реализация подобного проекта станет возможной, но пока мы можем пользоваться только относительно небольшими батареями на поверхности планеты. Многие скажут, что это тоже неплохо. Да, возможно в условиях частного дома, но для энергообеспечения больших городов, соответственно, необходимо либо множество солнечных батарей, либо технология, которая сделает их эффективнее.

Экономическая сторона вопроса здесь тоже присутствует: любой бюджет сильно пострадает, если на него будет возложена задача перевести целый город (или всю страну) на солнечные батареи. Казалось бы, можно обязать жителей городов выплачивать некоторые суммы на переоснащение, но в таком случае недовольны будут они, ведь если бы люди готовы были бы пойти на такие траты, они уже давно сделали бы это сами: возможность купить солнечную батарею есть у каждого.

Касательно солнечной энергии есть и еще один парадокс: затраты на производство. Перевод энергии солнца в электричество напрямую — не самая эффективная вещь. До сих пор еще не найдено способа лучше, чем использовать солнечные лучи для нагревания воды, которая, превращаясь в пар, в свою очередь вращает динамо-машину. В таком случае энергопотеря минимальна. Человечество хочет использовать "экологичные" солнечные панели и солнечные станции, чтобы сохранить ресурсы на земле, однако для подобного проекта потребуется огромное количество тех же ресурсов, и "неэкологичной" энергии. Например, во Франции недавно была построена солнечная электростанция, площадью около двух квадратных километров. Стоимость постройки составила около 110 миллионов евро, не считая затрат на эксплуатацию. При всем этом следует учитывать, что срок службы подобных механизмов составляет около 25 лет.

Ветер

Энергия ветра — также использовалась людьми еще с древности, самым простым примером можно назвать хождение под парусом и ветряные мельницы. Ветряки используются и сейчас, особенно они эффективны в областях с постоянными ветрами, например на побережье. Ученые постоянно выдвигают идеи, как модернизировать уже имеющиеся приспособления для преобразования ветряной энергии, одна из них - ветряки в виде парящих турбин. За счет постоянного вращения они могли бы "висеть" в воздухе на расстоянии нескольких сотен метров от земли, где ветер сильный и постоянный. Это помогло бы в электрификации сельской местности, где невозможно использование стандартных ветряков. К тому же такие парящие турбины могли бы быть оснащены интернет-модулями, с помощью которых осуществлялось бы обеспечение людей доступом в мировую паутину.

Приливы и волны

Бум на солнечную и ветряную энергетику постепенно проходит, и интерес исследователей привлекла другая природная энергия. Более перспективной считается использование приливов и отливов. Уже сейчас этим вопросом занимается около ста компаний по всему миру, существует и несколько проектов, доказавших эффективность данного способа добычи электричества. Преимущество перед солнечной энергетикой в том, что потери при переводе одной энергии в другую минимальны: приливная волна вращает огромную турбину, которая и вырабатывает электричество.

Проект "Устрица" — это идея установить на дне океана шарнирный клапан, который будет подавать воду на берег, тем самым вращая простую гидроэлектрическую турбину. Всего одна такая установка могла бы обеспечить электричеством небольшой микрорайон.

Уже сейчас в Австралии успешно применяют приливные волны: в городе Перте установлены опреснители, работающие на этом типе энергии. Их работа позволяет обеспечить пресной водой около полумиллиона человек. Природная энергетика и промышленность также могут сочетаться в этой отрасли производства энергии.

Использование несколько отличается от технологий, которые мы привыкли видеть в речных гидроэлектростанциях. Часто ГЭС наносят вред окружающей среде: затопляются прилегающие территории, разрушается экосистема, а вот станции, работающие на приливных волнах, в этом плане гораздо безопаснее.

Энергия человека

Одним из самых фантастических проектов в нашем списке можно назвать использование энергии живых людей. Звучит ошеломляюще и даже несколько ужасающе, но не все так страшно. Ученые лелеют мысль о том, как использовать механическую энергию движения. Речь в этих проектах идет о микроэлектронике и нанотехнологиях с низким энергопотреблением. Пока звучит как утопия, реальных разработок нет, но идея весьма интересная и не покидает умы ученых. Согласитесь, весьма удобны будут устройства, которые подобно часам с автоматической подзаводкой, будут заряжаться от того, что по сенсору проводят пальцем, или от того, что планшет или телефон просто болтается в сумке при ходьбе. Не говоря уж об одежде, которая, наполненная разными микроустройствами, могла бы преобразовывать в электричество энергию движения человека.

В Беркли, в лаборатории Лоуренса, например, ученые попытались воплотить в жизнь идею о том, чтобы использовать вирусы для давления в электричество. Небольшие механизмы, работающие от движения, так же имеются, однако пока что на поток подобная технология не поставлена. Да, с глобальным энергетическим кризисом подобным образом не справиться: скольким же людям придется "крутить педали", чтобы заставить работать целый завод? Но как одна из мер, применяемых в комплексе, теория вполне жизнеспособна.

Особенно подобные технологии будут эффективны в труднодоступных местах, на полярных станциях, в горах и тайге, среди путешественников и туристов, у которых не всегда есть возможность зарядить свой гаджет, а вот оставаться на связи важно, особенно если группа попала в критическую ситуацию. Как много всего можно было бы предотвратить, если бы у людей всегда было надежное устройство связи, не зависящее "от розетки".

Топливные ячейки водорода

Пожалуй, у каждого владельца авто, глядящего на индикатор количества бензина, приближающийся к нулю, возникала мысль о том, как отлично было бы, если бы машина работала на воде. Но сейчас ее атомы попали в поле зрения ученых как настоящие объекты энергетики. Дело в том, что в частицах водорода — самого распространенного газа во вселенной — содержится громадное количество энергии. Более того, двигатель сжигает этот газ практически без побочных продуктов, то есть, мы получаем очень экологичное топливо.

Водородом заправляют некоторые модули МКС и шатлы, но на Земле он существует в основном в виде соединений, таких как вода. В восьмидесятых годах в России были разработки самолетов, использующих в качестве топлива водород, эти технологии даже применяли на практике, и экспериментальные модели доказали свою эффективность. Когда водород отделяется, он перемещается в специальную топливную ячейку, после чего возможна генерация электричества напрямую. Это не энергетика будущего, это уже реальность. Подобные автомобили уже производятся и довольно большими партиями. Компания Honda, дабы подчеркнуть универсальность источника энергии и авто в целом, провела эксперимент в результате которого машина была подключена к электрической домашней сети, однако не для того, чтобы получить подзарядку. Автомобиль может обеспечивать энергией частный дом в течение нескольких дней, или проехать без дозаправки почти пятьсот километров.

Единственный недостаток подобного источника энергии на данный момент — это относительно высокая стоимость таких экологичных машин, и, конечно, достаточно небольшое количество водородных заправок, однако во многих странах уже планируется их постройка. Например, в Германии уже стоит план об установке ста заправочных станций к 2017 году.

Тепло земли

Превращение тепловой энергии в электричество — это и есть сущность геотермальной энергетики. В некоторых странах, где затруднено использование других отраслей, она используется довольно широко. Например, на Филлипинах 27 % всего электричества приходится именно на геотермальные станции, а в Исландии этот показатель составляет около 30 %. Сущность этого способа добычи энергии довольно проста, механизм схож с простой паровой машиной. До предполагаемого "озера" магмы необходимо пробурить скважину, через которую подается вода. При контакте с раскаленной магмой вода мгновенно превращается в пар. Он поднимается, где крутит механическую турбину, тем самым вырабатывая электричество.

Будущее геотермальной энергетики состоит в том, чтобы найти большие "хранилища" магмы. Например, в вышеупомянутой Исландии это удалось: раскаленная магма за долю секунды превратила всю закачанную воду в пар температурой около 450 градусов по Цельсию, что является абсолютным рекордом. Подобный пар высокого давления способен повысить эффективность геотермальной станции в несколько раз, это может стать толчком к развитию геотермальной энергетики во всем мире, особенно в областях, насыщенных вулканами и термальными источниками.

Использование ядерных отходов

Атомная энергетика, в свое время, произвела настоящий фурор. Так было до тех пор, пока люди не осознали всю опасность этой отрасли энергетики. Аварии возможны, от подобных случаев никто не застрахован, но они весьма редки, а вот радиоактивные отходы появляются стабильно и до недавнего времени ученые не могли решить эту проблему. Дело в том, что стержни урана — традиционное "топливо" АЭС, может быть использовано только на 5 %. После выработки этой небольшой части, весь стержень отправляется на "свалку".

Ранее применялась технология, при которой стержни погружались в воду, которая замедляет нейтроны, поддерживая устойчивую реакцию. Сейчас вместо воды стали использовать жидкий натрий. Эта замена позволяет не только использовать весь объем урана, но и переработать десятки тысяч тонн радиоактивных отходов.

Избавить планету от отходов атомной энергетики важно, но в самой технологии есть одно "но". Уран относится к ресурсам, и его запасы на Земле конечны. В случае если всю планету перевести исключительно на энергию, получаемую от АЭС (к примеру, в США АЭС производят лишь 20% всего потребляемого электричества), запасы урана будут истощены довольно быстро, и это снова приведет человечество на порог энергетического кризиса, так что атомная энергетика, пусть и модернизированная, только временная мера.

Растительное топливо

Еще Генри Форд, создав свою "Модель Т", рассчитывал, что она уже будет работать на биотопливе. Однако в то время были открыты новые нефтяные месторождения, и нужда в альтернативных источниках энергии отпала еще на несколько десятков лет, но теперь снова возвращается.

За последние пятнадцать лет использование растительных видов топлива, таких как этанол и биодизель, возросло в несколько раз. Их используют как самостоятельные источники энергии, так и в качестве добавок к бензину. Некоторое время назад надежды возлагались на особую просяную культуру, получившую название "канола". Она совершенно непригодна в пищу ни для людей, ни для скота, однако обладает высокими показателями масличности. Из этого масла и стали производить "биодизель". Но эта культура займет слишком много места, если попытаться вырастить ее столько, чтобы обеспечить топливом хотя бы часть планеты.

Теперь ученые заговорили об использовании водорослей. Их масличность около 50 %, что позволит так же легко извлекать масло, а отходы можно превращать в удобрения, на основе которых будут выращиваться новые водоросли. Идея считается интересной, но свою жизнеспособность пока что не доказала: публикация об успешных экспериментах в этой области пока не опубликовано.

Термоядерный синтез

Будущая энергетика мира, по мнению современных ученых, невозможна без технологий Это, на данный момент, самая перспективная разработка, в которую уже вкладывают миллиарды долларов.

В используется энергия деления. Она опасна тем, что есть угроза возникновения неуправляемой реакции, которая уничтожит реактор, и приведет к выбросу огромного количества радиоактивных веществ: пожалуй, все помнят аварию на Чернобыльской АЭС.

В реакциях термоядерного синтеза, что следует из названия, используется энергия, выделяемая при слиянии атомов. В результате, в отличие от атомного деления, не образуется никаких радиоактивных отходов.

Главной проблемой является то, что в результате термоядерного синтеза образуется вещество, имеющее настолько высокую температуру, что может уничтожить весь реактор.

Будущего — реальность. И фантазии здесь неуместны, на данный момент на территории Франции уже началась постройка реактора. Несколько миллиардов долларов вложено в экспериментальный проект, который профинансирован многими странами, в число которых, помимо ЕС, входят Китай и Япония, США, Россия и другие. Изначально первые эксперименты планировалось запустить уже в 2016 году, однако расчеты показали, что бюджет слишком мал (вместо 5 миллиардов потребовалось 19), и запуск перенесли еще на 9 лет. Возможно, через несколько лет мы увидим, на что способна термоядерная энергетика.

Проблемы настоящего и возможности будущего

Не только ученые, но и писатели-фантасты, дают множество идей для воплощения технологии будущего в энергетике, однако все сходятся на том, что пока что ни один из предложенных вариантов не может произвести полное обеспечение всех потребностей нашей цивилизации. К примеру, если все автомобили в США будут ездить на биотопливе, полями канолы придется засадить территорию, равную половине всей страны, без учета того, что земель, пригодных для земледелия в Штатах не так уж много. Более того, пока что все способы производства альтернативной энергии - дороги. Пожалуй, каждый из простых городских жителей, согласен, что важно использовать экологически чистые, возобновляемые ресурсы, однако не в случае, когда им озвучивают стоимость такого перехода на данный момент. Ученым предстоит еще много работать в этой сфере. Новые открытия, новые материалы, новые идеи - все это поможет человечеству успешно справиться с назревающим ресурсным кризисом. Решить планеты можно только комплексными мерами. В некоторых областях удобнее применять добычу энергии с помощью ветра, где-то - солнечные батареи, и так далее. Но, возможно, главным фактором станет снижение энергопотребления в целом и создание энергосберегающих технологий. Каждый человек должен понимать, что несет ответственность за планету, и каждый должен задать себе вопрос: "Какую энергетику я выбираю для будущего?" Прежде чем перейти на другие ресурсы, каждый должен осознать, что это действительно необходимо. Только при комплексном подходе удастся решить проблему энергопотребления.



Понравилась статья? Поделитесь с друзьями!