Какими факторами определяется микроклимат производственных помещений. Микроклимат на рабочем месте: как удержать ситуацию под контролем

Цель работы:

Познакомиться с комплексом метеорологических условий в производственных помещениях, с гигиеническими требованиями (нормативами) к показателям микроклимата производственных помещений и освоить некоторые способы оценки показателей метеорологических условий.

Порядок выполнения работы:

  1. Изучить и законспектировать общие сведения о комплексе метеорологических условий на рабочем месте по пункту I.
  2. Изучить и законспектировать сведения о способах измерения показателей микроклимата на рабочем месте по пункту II.
  3. Рассчитать согласно варианта величину относительной влажности на рабочем месте по пункту III.

I Общие сведения

Термины и определения

Производственные помещения - замкнутые пространства в специально предназначенных зданиях и сооружениях, в которых постоянно (по сменам) или периодически (в течение рабочего дня) осуществляется трудовая деятельность людей.

Рабочее место - участок помещения на котором в течение рабочей смены или части её осуществляется трудовая деятельность. Рабочим местом может являться несколько участков производственного помещения.

Холодный период года - период года, характеризуемый среднесуточной температурой наружного воздуха равной +10оС и ниже.

Теплый период года - период года, характеризуемый среднесуточной температурой наружного воздуха выше +10 о С.

Среднесуточная температура наружного воздуха - средняя величина температуры наружного воздуха, измеренная в определенные часы суток через одинаковые интервалы времени. Она принимается по данным метеорологической службы.

- сочетанное действие на организм человека параметров микроклимата (температура, влажность, скорость движения воздуха, тепловое облучение), выраженное одночисловым показателем в о С.

Общие требования и показатели микроклимата

Санитарные правила устанавливают гигиенические требования к показателям микроклимата рабочих мест производственных помещений с учётом интенсивности энерготрат работающих, времени выполнения работы, периодов года и содержат требования к методам измерения и контроля микроклиматических условий.

Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

Комплекс метеорологических условий (микроклимат) в производственных помещениях - климат внутренней среды этих помещений.

Показателями, характеризующими микроклимат в производственных помещениях, являются:

Величины параметров микроклимата в производственном помещении зависят от ряда факторов: климатического пояса и сезона года, характера технологического процесса и вида используемого оборудования, условий воздухообмена, размеров помещения, числа работающих и др. Некоторые показатели микроклимата (температура воздуха и интенсивность инфракрасного излучения) могут меняться на протяжении смены или различаться на отдельных участках одного и того же цеха.

В связи с этими обстоятельствами различают следующие разновидности микроклиматов (классификацию): а) комфортный; б) с повышенной влажностью, при нормальной, низкой и высокой температуре воздуха; в) переменный (при работе на открытом воздухе); г) нагревающий с преобладанием радиационной теплоты и с преобладанием конвекционной теплоты; д) охлаждающий с субнормальными температурами воздуха (от +10 до -10 о C) и с низкими температурами воздуха (ниже -10оC).

Краткая характеристика показателей микроклимата

Температура воздуха - степень его нагретости, выражаемая в градусах. Высокая температура воздуха наблюдается в помещениях, где технологические процессы сопровождаются значительными тепловыделениями. Низкая температура воздуха имеет место при работах на открытом воздухе зимой и в переходные периоды года или при обслуживании искусственно охлаждаемых помещений.

Влажность воздуха - содержание в нем паров воды. Различают: абсолютную влажность, которая выражается давлением водяных паров (Па) или в весовых единицах в определенном объеме воздуха (г/м 3), максимальную влажность (г/м 3) - это количество влаги при полном насыщении воздуха при данной температуре, относительную влажность - это отношение абсолютной влажности к максимальной, выражаемую в процентах.

Движение воздуха (м/с) создается в результате разности температур или разности давлений в смежных участках помещения, при поступлении холодных потоков воздуха извне за счет работы вентиляционной системы, а также при перемещении машин, агрегатов, людей. Движение воздуха в жарком помещении способствует увеличению теплоотдачи организмом и улучшению самочувствия. Однако неблагоприятно действует в холодное время года. Скорость движения воздуха влияет также на распределение вредных веществ в помещении (распространять по всему помещению и пр.) или поднимает пыль, ухудшая тем самым качество воздуха.

Тепловое излучение (инфракрасная радиация) - это электромагнитное излучение с длиной волны от 0,76 до 500 мкм. Интенсивность теплового излучения выражают в Дж/(см 2 .мин) или в Вт/м 2 (Ватт/м 2).

Действие на организм показателей микроклимата

Избыточное тепло- и влаговыделения, а также высокая подвижность воздуха ухудшают микроклимат производственных помещений, затрудняют терморегуляцию, неблагоприятно влияют на организм работающих и способствуют снижению производительности и качества труда.

Несмотря на то, что показатели, определяющие микроклимат в помещении, могут значительно колебаться (в пределах допустимого), температура тела человека остается, как правило, постоянной.

Свойство организма поддерживать тепловой баланс называется терморегуляцией. При понижении температуры окружающего воздуха возникают ограничения теплоотдачи организмом, что снижает кровоток в кожных покровах и уменьшает влажность кожи. При повышении температуры воздуха происходят обратные процессы. В теплообменных процессах механизмам теплоотдачи принадлежит ведущая роль.

В нормальных микроклиматических условиях теплоотдача организмом осуществляется в основном за счет излучения, на долю которого приходится около 45% всей удаляемой теплоты, в меньшей степени за счет конвекции (перенос теплоты частицами воздуха) - 30% и испарения - 25%. При пониженной температуре окружающей среды возрастает вклад конвекционно - радиационных теплопотерь организмом, а при повышенной температуре - испарения. При температуре окружающего воздуха, равной температуре тела, единственным способом теплоотдачи организмом становится испарение пота. Отдача тепла испарением пота зависит от относительной влажности и скорости движения окружающего воздуха.

Интегральным показателем теплового состояния организма человека является температура тела. О степени напряжения терморегуляции и о тепловом состоянии организма судят по изменениям температуры кожи и тепловому балансу. Косвенными показателями теплового состояния могут служить влагопотери и реакция сердечно-сосудистой системы (частота сердечных сокращений, величина артериального давления и др.). Стойкое напряжение терморегуляции вследствие постоянного перегревания или переохлаждения организма способствует развитию некоторых заболеваний.

В условиях нагревающего микроклимата ограничение теплоотдачи может привести к перегреванию организма. Это состояние характеризуется повышением температуры тела, учащением пульса, обильным потоотделением, а при очень сильном перегревании - тепловым ударом - упадком сил, расстройством координации движений, падением артериального давления, потерей сознания, судорогами.

При работах на открытом воздухе в результате интенсивного солнечного облучения головы возможен солнечный удар. Он проявляется головной болью, расстройством зрения, рвотой, судорогами, но при нормальной температуре тела.

Под действием инфракрасного облучения возникают как местные (повышение температуры кожи, помутнение хрусталика - катаракта), так и общие изменения (нарушения функций сердечно-сосудистой и нервной систем). Инфракрасное лучистое тепло, кроме непосредственного воздействия на работников, нагревает окружающие конструкции (пол, стены, оборудование), повышает температуру внутри помещения, тем самым ухудшает условия работы.

Оптимальные условия микроклимата

Микроклиматические условия, при которых отсутствуют неприятные ощущения и напряженность системы терморегуляции, называются оптимальными .

Они обеспечивают общее и локальное ощущение комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах.

Оптимальные параметры микроклимата на рабочих местах должны соответствовать величинам, приведенным в табл.1, применительно к выполнению работ различных категорий в холодный и теплый периоды года.

Перепады температуры воздуха по высоте и по горизонтали, а также изменения температуры воздуха в течение смены при обеспечении оптимальных величин микроклимата на рабочих местах не должны превышать 2 о С и выходить за пределы величин, указанных в табл.1 для отдельных категорий работ.

В тех случаях, когда по технологическим требованиям, техническим и экономическим причинам не могут быть обеспечены оптимальные нормы, тогда устанавливаются допустимые величины показателей микроклимата.

Допустимые микроклиматические условия установлены по критериям допустимого теплового и функционального состояния человека на период 8-часовой рабочей смены. Они не вызывают повреждений или нарушений состояния здоровья, но могут приводить к возникновению общих и локальных ощущений дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности.

Таблица 1. Оптимальные величины показателей микроклимата на рабочих местах производственных помещений

Период года Категория работ по уровню энергозатрат, Вт Температура воздуха, о С Температура поверхностей, С Относительная влажность, %
холодный Iа (до 139)
Iб (140-174)
IIа (175-232)
IIб (233-290)
III (более290)
22-24
21-23
19-21
17-19
16-18
21-25
20-24
18-22
16-20
15-19
60-40
60-40
60-40
60-40
60-40
0,1
0,1
0,2
0,2
0,3
теплый Ia (до 139)
Iб (140-174)
IIa (175-232)
IIб (233-290)
III (более290)
23-25
22-24
20-22
19-21
18-20
22-26
21-25
19-23
18-22
17-21
60-40
60-40
60-40
60-40
60-40
0,1
0,1
0,2
0,2
0,3

Допустимые величины показателей микроклимата на рабочих местах должны соответствовать значениям, приведенным в табл.2 применительно к выполнению работ различных категорий в холодный и теплый периоды года. При обеспечении допустимых величин микроклимата на рабочих местах:

  • перепад температуры воздуха по высоте должен быть не более 3 о С;
  • перепад температуры воздуха по горизонтали, а также её изменения в течение смены не должны превышать:

При этом абсолютные значения температуры воздуха не должны выходить за пределы величин, указанных в табл.2 для отдельных категорий работ. При температуре воздуха на рабочих местах 25 о С и выше максимально допустимые величины относительной влажности воздуха не должны выходить за пределы:

  • 70 % - при температуре воздуха 25 о С;
  • 65 % - при температуре воздуха 26 о С;
  • 60 % - при температуре воздуха 27 о С;
  • 55 % - при температуре воздуха 28 о С.

При температуре воздуха 26-28 о С скорость движения воздуха, указанная в табл.2 для тёплого периода года, должна соответствовать диапазону:

  • 0,1 - 0,2 м/с - при категории работ Iа;
  • 0,1 - 0,3 м/с - при категории работ Iб;
  • 0,2 - 0,4 м/с - при категории работ IIа;
  • 0,2 - 0,5 м/с - при категориях работ IIб и III.

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м 2 при облучении 5О% поверхности тела и более, 70 Вт/м 2 - при величине облучаемой поверхности от 25 до 50% и 100 Вт/м 2 - при облучении не более 25% поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, "открытое" пламя и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

II. Требования к методам измерения и контроля показателей микроклимата

Измерения показателей микроклимата в целях контроля их соответствия гигиеническим требованиям должны проводиться в холодный период года - в дни с температурой наружного воздуха, отличающейся от средней температуры наиболее холодного месяца зимы не более чем на 5 о С, в теплый период года - в дни с температурой наружного воздуха, отличающейся от средней максимальной температуры наиболее жаркого месяца не более чем на 5 о С. Частота измерений в оба периода года определяется стабильностью производственного процесса, функционированием технологического и санитарно-технического оборудования.

При выборе участков и времени измерения необходимо учитывать все факторы, влияющие на микроклимат рабочих мест (фазы технологического процесса, функционирование систем вентиляции и отопления и др.). Измерения показателей микроклимата следует проводить не менее 3 раз в смену (в начале, середине и в конце). При колебаниях показателей микроклимата, связанных с технологическими и другими причинами, необходимо проводить дополнительные измерения при наибольших и наименьших величинах термических нагрузок на работающих.

При наличии источников локального тепловыделения, охлаждения или влаговыделения измерения следует проводить на каждом рабочем месте в точках, минимально и максимально удаленных от источников термического воздействия.

При работах, выполняемых сидя, температуру и скорость движения воздуха следует измерять на высоте 0,1 и 1,0 м, а относительную влажность воздуха - на высоте 1,0 м от пола или рабочей площадки. При работах, выполняемых стоя, температуру и скорость движения воздуха следует измерять на высоте 0,1 и 1,5 м, а относительную влажность воздуха - на высоте 1,5 м.

Таблица 2. Допустимые величины показателей микроклимата на рабочих местах производственных помещений

Период года Категория работ по уровню энерготрат, Вт Температура воздуха, о С Температура поверхностей, оС Относительная влажность воздуха, % Скорость движения воздуха, м/с
диапазон ниже оптимальных величин диапазон выше оптимальных величин для диапазона температур воздуха ниже оптимальных величин, не более для диапазона температур воздуха выше оптимальных величин, не более
Холодный Iа (до 139)
Iб (14О-174)
IIа (175-232)
IIб (233-29О)
III (более 29О)
20,0-21,9
19,0-20,9
17,0-18,9
15,0-16,9
13,0-15,9
24,1-25,0
23,1-24,0
21,1-23,0
19,1-22,0
18,1-21,0
19,0-26,0
18,0-25,0
16,0-24,0
14,0-23,0
12,0-22,0
15-75
15-75
15-75
15-75
15-75
0,1
0,1
0,1
0,2
0,2
0,1
0,2
0,3
0,4
0,4
Теплый Iа (до 139)
Iб (14О-174)
IIа (175-232)
IIб (233-29О)
III (более 29О)
21,0-22,9
20,0-21,9
18,0-19,9
16,0-18,9
15,0-17,9
25,1-28,0
24,1-28,0
22,1-27,0
21,1-27,0
20,1-26,0
20,0-29,0
19,0-29,0
17,0-28,0
15,0-28,0
14,0-27,0
15-75
15-75
15-75
15-75
15-75
0,1
0,1
0,1
0,2
0,2
0,2
0,3
0,4
0,5
0,5

При наличии источников лучистого тепла тепловое облучение на рабочем месте необходимо измерять от каждого источника, располагая приёмник прибора перпендикулярно падающему потоку. Измерения проводить на высоте 0,5, 1,0 и 1,5 м от пола или рабочей площадки.

Температуру поверхностей следует измерять в случаях, когда рабочие места удалены от них на расстояние не более двух метров.

Температура каждой поверхности измеряется аналогично измерению температуры воздуха.

По результатам исследования необходимо составить протокол и должна быть дана оценка результатов на соответствие нормативным требованиям.

Температуру и относительную влажность воздуха следует измерять стационарным или аспирационным психрометрами (рис.1 и рис 2).

Скорость движения воздуха измеряют крыльчатым или чашечным анемометрами (рис 5 и рис 6), а малые величины скорости движения воздуха (менее 0,3 м/с) измеряют цилиндрическим или шаровым кататермометрами.

Тепловое облучение, температуру поверхностей конструкций (стен, пола, потолка) или устройств следует измерять актинометром или электротермометром.

Измерение температуры воздуха в производственных помещениях обычно сочетается с определением влажности и производится по сухому термометру психрометра.

Элективное определение температуры воздуха может потребоваться при некоторых специальных исследованиях, например, при отборе проб воздуха для химического анализа или в случаях, когда измеряемая температура воздуха превышает пределы шкалы психрометра (45-50 о С). В этих случаях пользуются обычными ртутными термометрами со шкалой на 100 о С.

Для измерения температуры воздуха в присутствии теплового излучения применяют парный термометр (рис 3) . Прибор состоит из двух ртутных термометров со шкалой на 100 о С. Поверхность ртутного резервуара одного из них зачернена, другого посеребрена. Первый поглощает падающую на него лучистую энергию, нагревается ею и поэтому его показания завышены. Второй термометр в основном отражает излучение. Его показания главным образом отображают температуру воздуха. Однако и этот термометр частично поглощает падающие на него лучи и также слегка завышает показания термометра. В связи с этим истинную температуру воздуха рассчитывают по эмпирической формуле:

, (1)

где t и - истинная температура;

t Б - показания термометра с посеребренным резервуаром;

t Т - показания термометра с зачерненным резервуаром;

k - константа данного прибора (по паспорту), обычно - в пределах 0.10 - 0.12.


Таблица 3.Исходные данные к задачам по расчету относительной влажности воздуха

Параметры Варианты
1 2 3 4 5 6 7 8 9 10
Температура сухого термометра, t сух (о С) 21 24 26 24 25 27 22 22 24 24
Температура влажного термометра, t в (о С) 18 20 21 21 21 22 19 18 19 20
Барометрическое давление Н, мм рт.ст. 760 755 750 745 740 765 763 757 767 770
Скорость движения воздуха, v (м/с) 0,01 0,06 0,08 0,10 0,13 0,16 0,20 0,30 0,40 0,80
Относительная влажность воздуха, f(%) - ?

Измерение относительной влажности воздуха посредством стационарного психрометра

Стационарный психрометр (рис.1) представляет собой прибор, состоящий из двух одинаковых рядом расположенных термометров со шкалой на 50 о С. Резервуар одного из них обертывается кусочком тонкой ткани и опускается в стаканчик с водой.

Измерения посредством этого прибора производятся в течение 10-15 минут до момента стабилизации ртутных (или спиртовых) столбиков в обоих термометрах на постоянном уровне.

При использовании стационарного психрометра относительную влажность определяют в следующем порядке. Сначала на основании показаний влажного термометра вычисляют абсолютную влажность, которая вычисляется по формуле (2):

, (2)

где А - абсолютная влажность, мм рт. ст.;

F 2 - упругость водяных паров (Табл.4, промежуточные данные брать с помощью интерполяции) при температуре влажного термометра, мм рт. ст.;

Психрометрический коэффициент (табл.3);

t c - показания сухого термометра, о С;

t в - показания влажного термометра, о С;

Н - барометрическое давление, мм рт. ст.

Величина психрометрического коэффициента "" зависит от скорости движения воздуха и для данной скорости есть величина постоянная (табл.3). Известно, что показания стационарного психрометра становятся точнее, если обеспечивается вокруг него некоторое движение воздуха. Для этого при измерении температуры стационарным психрометром вблизи прибора создается движение воздуха (0.8 м/c) неспешным помахиванием книги в течение 4-5 минут.

Шкала барометра анероида (рис.4) градуируется в паскалях, в то время как, в формуле (2) требуется размерность барометрического давления, выраженная в мм рт. ст. Соотношение между этими показателями таково: 1 мм рт ст = 133,32 паскалей (Па).

Например, 101 070 Па: 133,32 = 749 мм рт. ст.

Относительную влажность определяют по формуле:

, (3)

где f - искомая относительная влажность воздуха, % ;

А - абсолютная влажность, мм рт. ст.;

F 1 - упругость насыщенных паров, мм рт. ст. при температуре, показанной сухим термометром (см. табл.4).

Определение относительной влажности аспирационным психрометром

Аспирационный психрометр (рис. 2) надежнее, точнее и удобнее в работе, чем стационарный, хотя принципиальное устройство у них одинаковое. В аспирационном психрометре термометры заключены в металлическую оправу, что защищает их от механических повреждений. Резервуары термометров располагаются внутри двойных металлических цилиндров, которые защищают как от ударов, так и от радиационной теплоты. Прибор оснащен микровентилятором с часовым механизмом, который обеспечивает обдув воздухом резервуаров термометров с постоянной скоростью (4 м/с). В связи с этим время, необходимое для проведения измерения, сокращается до 3-5 минут и значительно упрощается формула для расчета абсолютной влажности:

Контрольные вопросы

  1. Какие критерии устанавливают санитарные правила для граждан России?
  2. Какое деяние считается санитарным правонарушением?
  3. Какие виды ответственности предусматриваются Законом о санитарно-эпидемиологическом благополучии РФ для лиц, допустивших санитарное правонарушение?
  4. Что такое производственное помещение?
  5. Что такое рабочее место?
  6. Что такое холодный период года?
  7. Что такое теплый период года?
  8. Что такое среднесуточная температура наружного воздуха?
  9. Какие категории работ выделяются по общим энерготратам организма?
  10. Что такое микроклимат в производственных помещениях?
  11. Какие параметры составляют микроклимат рабочих помещений?
  12. Каково главное требование к параметрам микроклимата в производственных помещениях?
  13. Какие условия влияют на величину параметров микроклимата?
  14. Какие виды микроклиматов (классификацию) различают?
  15. Что такое температура воздуха?
  16. Что такое влажность воздуха?
  17. Что такое абсолютная влажность и в каких единицах она измеряется?
  18. Что такое максимальная влажность и в каких единицах она измеряется?
  19. Что такое относительная влажность и в каких единицах она измеряется?
  20. Что такое движение воздуха в рабочих помещениях и почему оно возникает?
  21. Что такое тепловое излучение и в каких единицах оно измеряется?
  22. Как действуют на человека избыточные величины параметров микроклимата?
  23. Что такое терморегуляция?
  24. За счет каких механизмов осуществляется теплоотдача организмом?
  25. По какому интегральному показателю оценивают тепловое состояние организма?
  26. Какие осложнения возникают при нарушениях теплоотдачи организмом?
  27. В чем заключается различие между тепловым и солнечным ударами?
  28. В каких пределах могут находится величины параметров микроклимата?
  29. Что такое оптимальная величина параметра микроклимата?
  30. Какой может быть перепад температуры при обеспечении ее оптимального уровня?
  31. Что такое допустимая величина параметра микроклимата?
  32. При какой величине параметр микроклимата становится вредным или опасным?
  33. Какой может быть перепад температуры при обеспечении ее допустимого уровня на рабочем месте?
  34. Какова допустимая величина относительной влажности на рабочем месте?
  35. Какова допустимая величина скорости движения воздуха на рабочем месте?
  36. Какова допустимая интенсивность теплового излучения на рабочем месте?
  37. Каковы главные требования к методам измерения и контроля параметров микроклимата?
  38. Какими приборами измеряются параметры микроклимата на рабочем месте?
  39. Каким образом оценивается истинная температура на рабочем месте?
  40. Какой параметр микроклимата измеряется стационарным психрометром и как устроен этот прибор?
  41. Каким образом повышается точность показаний стационарного психрометра?
  42. По какой формуле определяется абсолютная влажность воздуха при использовании стационарного психрометра?
  43. По какой формуле определяется относительная влажность воздуха?
  44. По какой формуле определяется относительная влажность при использовании аспирационного психрометра?

Гигиенические требования к микроклимату производственных помещений позволяют поддерживать на рабочем месте здоровую, благоприятную для организма человека обстановку. Они содержатся в нормативном документе, утвержденном постановлением Госкомсанэпиднадзора России от 1 октября 1996 г. № 21 . Этот документ является обязательным для соблюдения всеми организациями, учреждениями, предприятиями, независимо от их формы собственности и организационно-правовой формы. Остановимся на рассмотрении его основных положений.

Показатели микроклимата

Прежде чем судить о микроклимате производственного помещения и принимать какие-то решения по его корректировке, нужно определенным образом и по определенным параметрам «измерить» его реальное состояние.

В соответствии с пунктом 4.3 Санитарных правил микроклимат производственного помещения измеряется при помощи заранее установленных показателей. К их числу относятся такие показатели, как:

  • температура воздуха;
  • температура поверхностей;
  • относительная влажность воздуха;
  • скорость движения воздуха;
  • интенсивность теплового облучения.

Следует отметить, что указанные показатели могут варьироваться в зависимости от определенных условий. А именно от того, в какой период года выполняется работа на измеряемом участке (в холодный или в теплый) и насколько эта работа интенсивна.

Например, если работа выполняется в холодное время года и не связана с большой энергетической тратой человеческого организма (допустим, работа оператора за компьютером), параметры микроклимата в помещении должны быть следующими: температура воздуха не менее + 22-24 °С (температура поверхностей не менее +21-25 °С, относительная влажность воздуха 60-40%, скорость движения воздуха 0,1 м/с). А если работа выполняется в теплое время года и при ее выполнении организм тратит слишком много энергии (например, работник разгружает «неподъемный» производственный инвентарь), температурная норма в помещении должна колебаться в пределах +18-20 °С (температура поверхностей не выше +17-21 °С, относительная влажность воздуха 60-40%, а скорость движения воздуха 0,3 м/с).

Словарь кадровика

Микроклимат помещения - это состояние внутренней среды помещения, оказывающей непосредственное воздействие на организм человека.

Производственное помещение - замкнутое пространство в специально предназначенном здании (сооружении), в котором постоянно (по сменам) или периодически (в течение рабочего дня) осуществляется трудовая деятельность людей.

Рабочее место - участок помещения, на котором в течение рабочей смены или части ее осуществляется трудовая деятельность. Рабочим местом может являться несколько участков производственного помещения. Если эти участки расположены по всему помещению, то рабочим местом считается вся площадь помещения.

Вредный производственный фактор - фактор окружающей среды, воздействие которого может вызвать у работника профессиональное заболевание, временное или стойкое снижение работоспособности, повысить частоту соматических и инфекционных заболеваний, привести к нарушению репродуктивной функции организма.

Оптимальные и допустимые условия

Санитарные нормы, о которых мы ведем сегодня речь, дают четкую градацию условий микроклимата производственных помещений. В соответствии с этим документом условия окружающей среды подразделяются на оптимальные и допустимые.

Оптимальные микроклиматические условия отличаются тем, что они обеспечивают полный комфорт тепловому и функциональному состоянию организма человека в течение восьмичасовой рабочей смены. Происходит это при минимальном напряжении механизмов терморегуляции, не вызывает отклонений в состоянии здоровья. Оптимальные условия микроклимата создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах.

В обязательном порядке эти условия устанавливаются на рабочих местах производственных помещений, на которых выполняются работы операторского типа. Об этом прямо сказано в пункте 5.2 Санитарных правил. Обычно эти работы связаны с нервно-эмоциональным напряжением человека (работа в кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники и др.). Перечень других рабочих мест и видов работ, при которых должны обеспечиваться оптимальные величины микроклимата, определяются Санитарными правилами по отдельным отраслям промышленности и другими документами, согласованными с органами Госсанэпиднадзора.

Словарь кадровика

Холодный период года - это период года, характеризующийся среднесуточной температурой наружного воздуха, равной +10° С и ниже.

Среднесуточная температура наружного воздуха - средняя величина температуры наружного воздуха, измеренная в определенные часы суток через одинаковые интервалы времени. Она принимается по данным метеорологической службы.

Теплый период года - это период года, характеризующийся среднесуточной температурой наружного воздуха выше +10° С.

Допустимые микроклиматические условия установлены по критериям допустимого и функционального состояния человека на период восьмичасовой рабочей смены. Они не столь комфортны, как оптимальные, однако не вызывают повреждений или каких-либо иных нарушений состояний здоровья человека. Однако в ряде случаев такие условия могут привести к возникновению общих или локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности человека. Допустимые величины показателей микроклимата устанавливаются в случаях, когда по технологическим требованиям, техническим и экономическим причинам не могут быть обеспечены оптимальные величины. В отдельных помещениях депо по ремонту подвижного состава железнодорожного транспорта (например, где производится сушка вагонов) температура воздуха и его влажность не могут быть установлены на уровне оптимальных величин. В противном случае пострадает как сам технологический процесс, так и качество выпущенной продукции.

Когда микроклимат становится вредным

На практике зачастую бывает так, что в производственных помещениях (опять же из-за технологических требований к производственному процессу) невозможно установить не только оптимальные, но и допустимые нормативные величины показателей микроклимата. В этом случае условия микроклимата следует рассматривать как вредные и опасные . В пример можно привести работы, проводимые, допустим, в лакокрасочных или сталеплавильных цехах различных производственных предприятий. В этом случае для профилактики неблагоприятного воздействия микроклимата на организм работника работодатель должен предпринять определенные меры.

В помещении мини-пекарни, оборудованной двумя установками по выпечке хлебобулочных изделий, показатели микроклимата (по технологическим причинам) установлены выше допустимой нормы. Так, в теплый период времени года фактическая температура воздуха в помещении достигает +29 °С (вместо допустимых +20-21,9 °С), а температура поверхностей +35 °С (вместо допустимых +24,1-28,0 °С). Для компенсации воздействия вредных факторов администрация пекарни оборудовала подсобные помещения душевыми кабинами, а также установила для работников дополнительный перерыв для отдыха, который включается в общую продолжительность рабочего времени (ст. 224 ТК РФ).

Кто контролирует микроклимат на рабочих местах

А теперь поговорим о том, кто непосредственно должен проводить контроль над состоянием микроклимата в производственном помещении. Надо оговориться сразу, что столь сложное и кропотливое дело по силам только специалистам непосредственно в этой области. Имеются в виду специалисты по инструментальному измерению факторов вредности окружающей среды. Рядовым сотрудникам с такой задачей просто не справиться. Однако кадровикам часто поручают курирование вопросов охраны труда в организации, поэтому необходимо знать, как действовать в том или ином случае и куда обратиться за помощью.

По общему правилу проблемой измерения микроклимата на рабочем месте должны заниматься сотрудники лаборатории самой организации. Однако не у каждой компании есть финансовые и технические средства для содержания подобного специализированного подразделения. В этом случае, если такой возможности нет, для исследования микроклимата производственного помещения компания может привлечь сторонние организации .

Возникает вопрос: все ли экологические компании могут оказывать подобные услуги? Отвечаем: нет, далеко не все. По закону к подобной экспертизе могут быть привлечены только:

  • центры государственного санитарно-эпидемиологического надзора;
  • лаборатории органов Государственной экспертизы условий труда РФ;
  • лаборатории, аккредитованные (аттестованные) на право проведения указанных измерений.

Специалисты перечисленных организаций и подразделений в оперативном порядке проведут все необходимые исследования. В случае отклонения показателей микроклимата от нормативных дадут четкие указания по их корректировке.

Если для исследования микроклимата производственного помещения вы хотите привлечь стороннюю организацию, то прежде, чем заключить с ней соответствующий договор, требуйте от ее руководства документы, подтверждающие право работать в данной области. Это документ на право измерения производственных факторов и сертификат , подтверждающий аккредитацию структурного подразделения в качестве испытательной лаборатории по ССОТ.

В процессе труда в производственном помещении человек находится в состоянии теплового взаимодействия с окружающей средой, которое зависит от определенных метеорологических условий, или микроклимата - климата внутренней среды этих помещений. Воздух рабочей зоны - это воздушная среда в пространстве высотой до 2 м над уровнем пола или площадки, где находятся рабочие места.

Основную долю в процессе отвода тепла от организма человека (порядка 90% общего количества тепла) вносят излучение, конвекция и испарение.

Теплоотдача конвекцией зависит от температуры воздуха в помещении и скорости его движения на рабочем месте, а отдача теплоты путем испарения - от относительной влажности и скорости движения воздуха.

К основным нормируемым показателям микроклимата воздуха рабочей зоны относятся:

    температура (t, 0 С),

    относительная влажность (φ, %),

    скорость движения воздуха (V , м/с).

Существенное влияние на параметры микроклимата и состояние человеческого организма оказывает также интенсивность теплового излучения (I, Вт/м 2) различных нагретых поверхностей, температура которых превышает температуру в производственном помещении.

Относительная влажность воздуха представляет собой отношение фактического количества паров воды в воздухе при данной температуре D (г/м 3) к количеству водяного пара, насыщающего воздух при этой температуре, D o (г/м 3): φ = D/D o . 100%.

Если в производственном помещении находятся различные источники тепла, температура которых превышает температуру человеческого тела, то тепло от них самопроизвольно переходит к менее нагретому телу, т. е. к человеку.

Тепло, поступающее в производственное помещение от различных источников, влияет на температуру воздуха в нем. В производственных помещениях с большим тепловыделением приблизительно 2/3 тепла поступает за счет излучения, а практически все остальное количество приходится на долю конвекции.

Источником теплового излучения в производственных условиях является расплавленный или нагретый металл, открытое пламя, нагретые поверхности оборудования.

В отечественных нормативных документах введены понятия оптимальных и допустимых параметров микроклимата.

Оптимальными микроклиматическими условиями являются такие сочетания количественных параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма без напряжения механизмов терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах.

Допустимыми условиями являются такие сочетания количественных параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции, и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, но наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие и понижающие работоспособность.

В ГОСТе 12. 1.005-88 «Воздух рабочей зоны. Общие санитарно-гигиенические требования» представлены оптимальные и допустимые параметры микроклимата в производственном помещении в зависимости от тяжести выполняемых работ, количества избыточного тепла в помещении и сезона (времени года).

В соответствии с этим ГОСТом различают холодный и переходный периоды года (со среднесуточной температурой наружного воздуха ниже +10°С), а также теплый период года (с температурой +10°С и выше).

Физическая тяжесть работы определяется энергетическими затратами в процессе трудовой деятельности и подразделяется на следующие категории: легкие, средней тяжести и тяжелые физические работы.

Легкие физические работы (категория I) подразделяются на две подкатегории: I а, при которой энергозатраты составляют до 139 Вт, работы, проводимые сидя и сопровождающиеся незначительным физическим усилием; I 6, при которой энергозатраты составляют 140-174 Вт, работы, проводимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим усилием.

Физические работы средней тяжести (категория II) подразделяются также на две подкатегории: II а, при которой энергозатраты составляют 175-232 Вт, работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенных физических усилий; II 6, при которой энергозатраты составляют 233-290 Вт, работы, связанные с ходьбой, перемещением и перенесением тяжестей массой до 10 кг и сопровождающиеся умеренным физическим усилием.

Тяжелые физические работы (категория III) характеризуются расходом энергии более 290 Вт. К этой категории относятся работы, связанные с постоянными передвижениями, перемещением и перенесением значительных (свыше 10 кг) тяжестей и требующие больших физических усилий.

Параметры микроклимата в производственных помещениях контролируются различными контрольно-измерительными приборами.

Для измерения температуры воздуха в производственных помещениях применяют ртутные (для измерения температуры выше 0°С) и спиртовые (для измерения температуры ниже 0°С) термометры .

Если требуется постоянная регистрация изменения температуры во времени, используют приборы, называемые термографами . Например, отечественный прибор - термограф типа М-16 - регистрирует изменение температуры за определенный период (сутки или неделю). Существуют и другие устройства для измерения температуры воздуха, например, термопары.

Для измерения относительной влажности воздуха используются приборы, называемые психрометрами и гигрометрами , а для регистрации изменения этого параметра во времени служит гигрограф.

Простейший психрометр - это устройство, состоящее из сухого и влажного термометров. У влажного термометра резервуар обернут гигроскопической тканью, конец которой опущен в стаканчик с дистиллированной водой. Сухой термометр показывает температуру воздуха в производственном помещении, а влажный - более низкую температуру, так как испаряющаяся с поверхности влажной ткани вода отнимает тепло у резервуара термометра.

Существуют специальные переводные психрометрические таблицы, позволяющие по температурам сухого и влажного термометров определять относительную влажность воздуха в помещении.

Более сложным по конструкции, но и более точным является так называемый аспирационный психрометр , который также состоит из сухого и влажного термометров, помещенных в металлические трубки и обдуваемых воздухом со скоростью 3-4 м/с, в результате чего повышается стабильность показаний термометров и практически устраняется влияние теплового излучения. Определение относительной влажности осуществляется также с использованием психрометрических таблиц.

Аспирационные психрометры, например МВ-4М или М-34, могут быть использованы для одновременного измерения в помещении температуры воздуха и относительной влажности.

Другим устройством для определения относительной влажности служит гигрометр , действие которого основано на свойстве некоторых органических веществ (органических мембран, человеческого волоса) удлиняться во влажном воздухе и укорачиваться в сухом. Измеряя деформацию чувствительного элемента (мембраны или волоса), можно судить о величине относительной влажности в производственном помещении. Гигрографы записывают изменения величины относительной влажности как функцию времени.

Скорость движения воздуха в производственном помещении измеряется приборами - анемометрами.

Работа крыльчатого анемометра основана на изменении скорости вращения специального колеса, оснащенного алюминиевыми крыльями, расположенными под углом 45° к плоскости, перпендикулярной оси вращения колеса. Ось колеса соединена со счетчиком оборотов. При изменении скорости воздушного потока изменяется и скорость вращения колеса, т. е. увеличивается (уменьшается) число оборотов за определенный промежуток времени. По этой информации можно определить скорость воздушного потока. Крыльчатые анемометры рекомендуется применять для измерения скорости воздушного потока в интервале 0,4 -10 м/с, при скоростях 1-35 м/с применяются чашечные анемометры, в которых крылья заменены чашечками. Примером крыльчатого анемометра служит прибор АСО-3 тип Б, чашечного - тип МС-13.

Существуют и другие приборы для измерения скорости движения воздуха: шаровые или цилиндрические кататермометры и термоанемометры .

Интенсивность теплового излучения в отечественной практике измеряют актинометрами , действие которых основано на поглощении теплового излучения и регистрации выделившейся тепловой энергии.

Простейший тепловой приемник - термопара . Она представляет собой электрический контур из двух проволок, изготовленных из различных материалов (как металлов, так и полупроводников), например медь-константан, серебро-палладий, серебро-висмут, висмут-сурьма, вольфрам-рений и др .

Две проволоки из различных материалов сваривают или спаивают между собой. Тепловое излучение нагревает один из спаев двух проволок, в то время как другой спай служит для сравнения и поддерживается при постоянной температуре (Т о). Под воздействием разности температур возникает термо-ЭДС, которая измеряется чувствительным прибором, отградуированным в градусах соответственной шкалы.

При отклонении параметров микроклимата от величин, создающих комфортные условия, большое значение имеет правильный выбор спецодежды. При работе в помещениях с пониженной температурой воздуха необходимо использовать утепленную спецодежду. Для персонала, занятого в горячих цехах, используют спецодежду, изготовленную из материалов с низкой теплопроводностью.

Для поддержания нормальных параметров микроклимата в рабочей зоне применяют следующие основные мероприятия:

    механизацию и автоматизацию технологических процессов,

    защиту от источников теплового излучения,

    устройство систем вентиляции,

    кондиционирования воздуха и отопления.

Кроме того, важное значение имеет правильная организация труда и отдыха работников, выполняющих трудоемкие работы или работы в горячих цехах.

Механизация и автоматизация производственного процесса позволяют либо резко снизить трудовую нагрузку на работающих (массу поднимаемого и перемещаемого вручную груза, расстояние перемещения груза, уменьшить переходы, обусловленные технологическим процессом, и др.), либо вовсе убрать человека из производственной среды, переложив его трудовые функции на автоматизированные машины и оборудование. Однако автоматизация технологических процессов требует значительных экономических затрат, что затрудняет внедрение указанных мероприятий в производственную практику.

Для защиты от теплового излучения используют различные теплоизолирующие материалы , устраивают теплозащитные экраны и специальные системы вентиляции (воздушное душирование). Перечисленные средства защиты носят обобщающее понятие теплозащитных средств. Теплозащитные средства должны обеспечивать тепловую облученность на рабочих местах не более 350 Вт/м 2 и температуру поверхности оборудования не выше 35°С при температуре внутри источника тепла до 100 °С и не выше 45 °С - при температуре внутри источника тепла выше 100 °С.

Основным показателем, характеризующим эффективность теплоизоляционных материалов, является низкий коэффициент теплопроводности, который составляет для большинства из них 0,025-0,2 Вт/м. К.

Коэффициент теплопроводности или теплопроводность (λ) показывает, какое количество тепла проходит за счет теплопроводности в единицу времени через единичную площадь стенки при разности температур между поверхностями стенки один градус. В системе СИ размерность λ Вт/м.К.

Для теплоизоляции используют различные материалы, например, асбестовую ткань и картон, специальные бетон и кирпич, минеральную и шлаковую вату, стеклоткань, углеродный войлок и др.

Так, в качестве теплоизоляционных материалов для трубопроводов пара и горячей воды, а также для трубопроводов холодоснабжения, используемых в промышленных холодильниках, могут быть использованы материалы из минеральной ваты.

Теплозащитные экраны используют для локализации источников теплового излучения, снижения облученности на рабочих местах, а также для снижения температуры поверхностей, окружающих рабочее место. Часть теплового излучения экраны отражают, а часть поглощают.

Для количественной характеристики защитного действия экрана используют следующие показатели: кратность ослабления теплового потока (m), а также эффективность действия экрана (η э).

Эти характеристики выражаются следующими зависимостями:

m = Е 1 / Е 2 и η э = (Е 1 - Е 2) . 100%/ Е 1

где Е 1 и Е 2 - интенсивность теплового облучения на рабочем месте соответственно до и после установки экранов, Вт/м 2 ,

Показатель m определяет, во сколько раз первоначальный тепловой поток на рабочем месте превышал тепловой поток на рабочем месте после установки экрана, а показатель η э - какая часть из первоначального теплового потока доходит до рабочего места, защищенного экраном. Эффективность η э для большинства экранов лежит в пределах 50-98,8%.

Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны.

Теплоотражающие экраны изготавливаются из алюминия или стали, а также фольги или сетки на их основе. Теплопоглощающие экраны представляют собой конструкции из огнеупорного кирпича (типа шамота), асбестового картона или стекла (прозрачные экраны). Теплоотводящие экраны - это полые конструкции, охлаждаемые изнутри водой.

Своеобразным теплоотводящим прозрачным экраном служит так называемая водяная завеса, которую устраивают у технологических отверстий промышленных печей и через которую вводят внутрь печей инструменты, обрабатываемые материалы, заготовки и др.

Лабораторная работа № 4

ИССЛЕДОВАНИЕ МИКРОКЛИМАТА НА РАБОЧЕМ МЕСТЕ

Цель работы: получить представление об основных параметрах микроклимата; изучить принципы нормирования микроклимата в помещениях; исследовать и оценить параметры микроклимата на рабочем месте.

Теоретическая часть

1. Микроклимат и его влияние на организм человека

Микроклимат – это совокупность параметров среды, влияющих на тепловые ощущения человека: температуры, влажности и скорости движения воздуха и интенсивности теплового излучения от окружающих поверхностей, характерных для конкретного помещения.

Микроклимат оказывает существенное влияние на работоспособность человека, его самочувствие и здоровье.

Необходимость учёта параметров микроклимата предопределяется условиями теплового баланса между организмом человека и окружающей средой помещений.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Величина тепловыделений организма человека Q зависит от степени физического напряжения и параметров микроклимата. Для того чтобы физиологические процессы в его организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую человека среду. Нормальным тепловым ощущениям соответствует равенство между количествами выделяемого организмом человека и отдаваемого в окружающую среду тепла.

Теплообмен между организмом человека и окружающей средой осуществляется с использованием следующих процессов:

· теплопередача (теплопроводность) через одежду Q Т ;

· конвекция Q К ;

· тепловое излучение в окружающее пространство Q ИЗЛ ;

· испарение влаги (пота) с поверхности кожи Q ИСП ;

· дыхание (нагрев вдыхаемого воздуха) Q Д .

Теплопередача (теплопроводность) состоит в передаче тепла от одной частицы к другой при непосредственном контакте.

Конвекция представляет собой процесс теплообмена между телом человека и средой, осуществляемый движущимся воздухом. Конвективный теплообмен зависит от температуры окружающей среды, скорости движения воздуха, его влажности и барометрического давления.

Тепловое излучение представляет собой процесс теплообмена, осуществляемый путем испускания электромагнитных волн инфракрасного диапазона. Тепловые лучи непосредственно воздух практически не нагревают, но хорошо поглощаются твёрдыми телами и, следовательно, нагревают их. Нагреваясь, твёрдые тела сами становятся источниками тепла и уже путём конвекции нагревают воздух.

При температуре окружающей среды, равной или выше температуры поверхности тела человека, теплоотдача происходит только в виде выделения пота, на испарение 1 г которого затрачивается около 0,6 ккал. В состоянии покоя при температуре окружающего воздуха 18 °С доля Q К составляет около 30 % всей отводимой теплоты, Q ИЗЛ » 45 %, Q ИСП » 20 % и Q Д » 5 %.

При изменении температуры воздуха, скорости его движения и влажности, при наличии вблизи человека нагретых поверхностей, в условиях физической работы и т.д. эти соотношения существенно изменяются. Так, при высокой температуре воздуха (30 °С и выше), особенно при выполнении тяжёлой физической работы, потоотделение может усиливаться в десятки раз и достигать 1 – 1,5 л/ч.

Нормальное тепловое самочувствие человека (комфортные условия, соответствующие данному виду деятельности) обеспечивается, если выполняется условие теплового баланса:

Q Ч = Q Т + Q К + Q ИЗЛ + Q ИСП + Q Д,

где Q Ч – количество тепла, генерируемого организмом человека.

Температура внутренних органов человека поддерживается постоянной на уровне около 36,6 °С. Эта способность человеческого организма поддерживать постоянной температуру при изменении параметров микроклимата и при выполнении различной по тяжести работы называется терморегуляцией. Если тепловое равновесие нарушено (например теплоотдача меньше тепловыделений), то в организме происходит накопление тепла – перегрев. Если теплоотдача больше, чем тепловыделение, то происходит переохлаждение организма.

Комфортные метеорологические условия являются важным фактором обеспечения высокой производительности труда и профилактики заболеваний. При несоблюдении гигиенических норм микроклимата снижается работоспособность человека, возрастает опасность возникновения травм и ряда заболеваний, в том числе профессиональных.

Основные параметры микроклимата

Влажность воздуха . Влажность воздуха характеризует степень его насыщения водяными парами. Одна и та же температура воздуха в зависимости от степени его влажности ощущается человеком по-разному. Различают абсолютную и относительную влажность.

Абсолютная влажность (Р АБС ) – это количество водяного пара, содержащегося в 1 м 3 воздуха, т.е. плотность пара (г/м 3). Абсолютную влажность характеризуют также давлением водяного пара (гПа), т. е. парциальным давлением, которое оказывал бы водяной пар на стенки сосуда, если из данного сосуда удалить все другие компоненты воздуха.

Воздух с предельным содержанием водяного пара при данной температуре характеризуется давлением насыщенного пара (Р НАС ), которое увеличивается с повышением температуры воздуха. После достижения Р НАС начинается конденсация водяного пара.

Абсолютная влажность сама по себе не указывает на то, в насыщенном или ненасыщенном состоянии находится водяной пар, поэтому введено понятие относительной влажности.

Относительная влажность (φ ) определяется выражением:

φ = (P АБС /P НАС )·100, %. (1)

Относительная влажность влияет на теплообмен человека, например на интенсивность испарения влаги с поверхности кожи.

Температура воздуха оказывает большое влияние на состояние ор­­га­низма человека. Высокая температура окружающего воздуха повышает утомляемость, может привести к перегреву организма или вызвать тепловой удар. При небольшом перегреве возникают небольшое повышение температуры тела человека, обильное потоотделение, появляется ощущение жажды, учащаются дыхание и пульс. В более тяжёлых условиях может случиться тепловой удар, сопровождающийся повышением температуры до 40 – 41 °С, слабым и учащённым пульсом, потерей сознания. Характерным признаком наступления теплового удара является почти полное прекращение потоотделения. Тепловой удар может привести к смертельному исходу. Низкая температура окружающего воздуха может вызвать местное или общее переохлаждение организма человека, стать причиной простудных заболеваний или обморожения.

Скорость движения воздуха имеет большое значение для создания благоприятных условий жизнедеятельности. При большой скорости движения воздуха увеличивается интенсивность конвективного теплообмена. Если воздушные потоки имеют температуру ниже температуры поверхности кожи (30 - 33 °С), они оказывают освежающее действие на организм человека, а при температуре свыше 37 °С действуют угнетающе. Организм человека начинает ощущать воздушные потоки при скорости около 0,15 м/с.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий. Действие лучистого тепла не ограничивается изменениями, происходящими на облучаемом участке кожи, – на облучение реагирует весь организм. В организме возникают биохимические изменения, нарушения в сердечно-сосудистой и нервной системах. При длительном воздействии инфракрасных лучей может возникнуть катаракта глаз (помутнение хрусталика).

Тепловые ощущения человека зависят от сочетания микроклиматических параметров и от напряженности физической работы.

Для оценки комплексного влияния параметров микроклимата на организм человека при малых энергозатратах используется метод эквивалентно-эффективных температур. Этот метод позволяет на основании данных о параметрах микроклимата судить о тепловом состоянии человека. Для его использования введено понятие эквивалентно-эффективной температуры (ЭЭТ ), которая характеризует тепловое ощущение человека при одновременном воздействии температуры, влажности и скорости движения воздуха. ЭЭТ оценивается температурой неподвижного воздуха 100 % -ой относительной влажности, при которой тепловое ощущение человека такое же, как и при заданном сочетании температуры, влажности и скорости движения воздуха.

Область ЭЭТ в интервале температур от 17 до 22 °С соответствует зоне комфорта , внутри которой можно выделить линию комфорта, соответствующую ЭЭТ = 19 °С, при которой почти у всех исследуемых людей возникает ощущение комфорта.

На рисунке приведена номограмма, позволяющая определить влияние параметров микроклимата на тепловое ощущение человека.

3. Нормирование параметров микроклимата

Нормируемыми параметрами микроклимата в производственных помещениях являются: температура воздуха; относительная влажность воздуха; скорость движения воздуха; температура поверхностей помещения (стены, потолок, пол) и технологического оборудования; интенсивность теплового облучения. При нормировании параметров микроклимата учитывают интенсивность энергозатрат работающих (категорию работ по тяжести), период года, время пребывания на рабочих местах .

При этом различают оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические условия представляют такие сочетания параметров микроклимата, которые обеспечивают ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции

Допустимые микроклиматические условия могут приводить к ощущению теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и работоспособности. При условии 8-часовой рабочей смены они не вызывают повреждений или нарушений состояния здоровья. Допустимые значения параметров микроклимата устанавливают в случаях, когда по технологическим требованиям, техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные значения.

Номограмма эквивалентно-эффективных температур

В зависимости от энергозатрат в единицу времени работы подразделяются на следующие категории.

¨ Лёгкие физические работы (категория I ) – виды деятельности с интенсивностью энергозатрат до 174 Вт.

К категории относятся работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением с интенсивностью энергозатрат 140 – 174 Вт.

¨ Физические работы средней тяжести (категория II ) – виды деятельности с интенсивностью энергозатрат 175 – 290 Вт.

К категории IIa относятся работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения с интенсивностью энергозатрат 175 – 232 Вт.

К категории IIб относятся работы, связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением с интенсивностью энергозатрат 233 – 290 Вт.

¨ Тяжёлые физические работы (категория III ) – виды деятельности с интенсивностью энергозатрат с расходом энергии более 290 Вт. Эти работы связаны с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий.

При нормировании различают два периода года: холодный (со среднесуточной температурой наружного воздуха +10 °С и ниже) и тёплый (со среднесуточной температурой наружного воздуха выше +10 °С).

В табл. 1 приведены оптимальные (в скобках – допустимые) значения параметров микроклимата на постоянных рабочих местах производственных помещений.

Интенсивность теплового облучения учитывается, если в производственных помещении имеются источники тепла, нагретые до высокой температуры .

  • Тема 4. Управление безопасностью жизнедеятельности План
  • 1. Обеспечение безопасности жизнедеятельности
  • 2. Основные законодательные акты и нормативные документы
  • 3. Надзор и контроль за соблюдением законодательства о труде и о безопасности труда.
  • 4. Стандартизация в области безопасности труда
  • 4. Расследование и учет несчастных случаев
  • 5. Эффективность мероприятий по обеспечению безопасности на производстве
  • 7. Принципы построения и функционирования системы управления безопасностью труда
  • Тема 3. Единая государственная система предупреждения и ликвидации последствий чрезвычайных ситуаций (рсчс) и гражданской обороны (го) План
  • 1. Единая государственная система предупреждения и ликвидации последствий чрезвычайных ситуаций (рсчс)
  • 2. Гражданская оборона (го), её роль и место в Российской Федерации.
  • 2.2 Понятия го
  • 2.3 Организация и ведение го.
  • 3. Основы государственной политики в го. Принципы организации ведения го
  • 4. Степени готовности го и их краткая характеристика
  • Раздел III. Основы физиологии труда и комфортные условия жизни
  • Тема 4.Основы физиологии труда и комфортные условия жизни План
  • 1. Анализаторы человеческого организма.
  • 2. 1 Виды деятельности человека
  • 2.2 Физический и умственный труд
  • 2.3 Физиологические изменения в организме при работе
  • 3. Понятие микроклимата, его параметры.
  • 3.1 Общие требования к параметрам микроклимата
  • 3.2 Терморегуляция организма
  • 3.3 Методы и приборы измерения параметров микроклимата
  • Аспирационный психрометр
  • Дистанционный психрометр
  • Крыльчатый анемометр -
  • Термоанемометр по своей сути является акустическим прибором, то есть использует определение характеристик звука (а именно скорость звука), а затем эту информацию преобразует в нужный сигнал.
  • 5. Общие санитарно - технические требования к производственным помещениям и рабочим местам
  • 6. Приемы и способы создания комфортных условий для работы в производственных помещениях.
  • 7. Порядок организации оптимального освещения рабочих мест, способы определения качества естественного освещения и коэффициента освещенности
  • Раздел IV. Воздействие на человека вредных и опасных факторов среды обитания
  • 1.2 Повседневные абиотические факторы
  • 1.3 Литосферные опасности
  • 1.3.1 Землетрясение
  • 1.3.2 Сели
  • 1.3.3 Снежные лавины
  • 1.3.4 Извержение вулканов
  • 1.3.5 Оползни
  • 1.4 Гидросферные опасности
  • 1.4.1 Наводнения
  • 1.4.2 Цунами
  • 1.5 Атмосферные опасности
  • 1.6 Космические опасности
  • 1.2 Природные пожары
  • 1.2.1 Понятие «пожар» и «пожарная безопасность».
  • 1.2.2 Причины возникновения пожаров.
  • 1.2.3 Лесные пожары в России.
  • Лесные пожары - одна из серьезнейших проблем российских лесов.
  • 1.2.4 Приемы и средства ликвидации последствий лесных пожаров.
  • 1.3. Массовые заболевания. Правила поведения населения при проведении изоляционно - ограничительных мероприятий
  • 3.1 Массовые заболевания
  • 1.3.2 Противоэпидемические и санитарно-гигиенические мероприятия в очаге бактериального заражения
  • 1.3.3 Правила поведения населения при проведении изоляционно - ограничительных мероприятий
  • 2. Техногенные опасности.
  • 2.1 Вредные вещества.
  • 2.1.1 Показатели токсичности химических веществ
  • 4.1.2 Факторы, определяющие токсическое действие химических веществ
  • 2.1.3 Гигиеническое регламентирование химических факторов среды обитания
  • 2.1.4 Классификация промышленных ядов по характеру действия на организм человека
  • 2.1.5. Комбинированное действие промышленных ядов
  • 1,5Сс о / пдксо + 3сno2 / пдкno2
  • 2.1.6 Пути поступления ядов в организм
  • 2.1.7. Распределение ядов в организме, превращение и выведение
  • 2.1.8. Оценка реальной опасности химических веществ
  • 2.1.9. Защита от воздействия вредных веществ
  • 2.2 Вибрация
  • 2.3 Акустический шум
  • 2.3.1 Акустические загрязнения
  • 2.4 Инфразвук
  • 2.4.1 Инфразвук в нашем повсевдневном окружении
  • 2.4.2 Технотронные методики
  • 2.4.3 Исследования медиков в области влияния на человека инфразвука.
  • 2.4.4 Некоторые меры борьбы с инфразвуком
  • 2.5 Электромагнитные поля и излучения
  • 2.5.1 Воздействие электромагнитных полей
  • 2.5.2 Воздействие электромагнитного излучения
  • 2.6 Лазерное излучение
  • 2.7 Электрический ток
  • 2.7.1 Условия существования электрического тока
  • 2.7.2 Основы электробезопасности
  • 2.8 Механическое воздействие
  • 2.8.1 Классификация и характеристика чрезвычайных ситуаций техногенного характера.
  • 3.Защита и действия населения
  • 3.1 Мероприятия по защите населения
  • 3.1.1 Оповещение
  • 3.1.2 Эвакуационные мероприятия
  • 3.1.3 Укрытие населения в защитных сооружениях
  • 3.2 Медицинские мероприятия по защите населения
  • Тема 8. Основы социальной, медицинской и пожарной безопасности План
  • 1. Виды социальных опасностей проживания человека в городских условиях
  • 2. Виды психического воздействия на человека и защита от них
  • 2.1 Защита от опасностей, связанных с физическим насилием
  • 2.1.1 Насилие над детьми
  • 2.1.2 Суицид
  • 2.1.3 Сексуальное насилие
  • 2.2 Психическое состояние человека, его безопасность.
  • 2.2.1 Определение психических состояний
  • 2.2.2 Типичные положительные психические состояния человека
  • 2.2.3 Отрицательные психические состояния
  • 2.2.4 Персеверация и ригидность
  • 2.2.5 Основы информационной безопасности
  • 2.2.4 Меры защиты: четыре уровня защиты
  • 2.3 Основы информационной безопасности
  • 2.3.1 Информационная безопасность
  • 2.3.2 Меры защиты информационной безопасности
  • 3. Оказание первой доврачебной помощи
  • 3.1. Оказание первой помощи
  • 3.1.2 Искусственное дыхание и непрямой массаж сердца
  • 3.1.3 Остановка кровотечения
  • 3.1.4 Наиболее распространенные виды травм, их симптомы и оказание первой помощи
  • 3.1.5 Оказание первой доврачебной помощи при переломах, вывихах, ушибах и растяжении связок
  • 3.1.5 Оказание первой доврачебной помощи при химических отравлениях
  • 3.1.6 Оказание первой доврачебной помощи при поражении электрическим током
  • 3.1.7 Учреждения, оказывающие первую медицинскую помощь
  • 4. Основы пожарной безопасности
  • 4.1 Основные нормативные документы, регламентирующие требования пожарной безопасности
  • 4.2 Организационные противопожарные мероприятия по обеспечению пожарной безопасности в зданиях и помещениях с массовым пребыванием людей
  • 4.3.Первичные средства пожаротушения
  • 4.3.1 Огнетушащие свойства воды
  • 4.3.2 К первичным средствам пожаротушения относятся:
  • 4.3.3 Огнетушители
  • 4.3.4 Оказание доврачебной помощи при пожаре
  • Раздел V. Безопасность населения и территорий в чрезвычайных ситуациях
  • 1. Транспортные аварии
  • 2.Внезапное обрушение сооружений и зданий
  • 2. Чрезвычайные ситуации природного характера
  • Природные пожары.
  • 3. Возможный характер будущей войны
  • 4. Понятие оружия массового поражения.
  • 4.1 Ядерное оружие
  • 4.2 Химическое оружие
  • 4.3 Бактериологическое (биологическое) оружие
  • 5. Основные способы защиты населения
  • 6. Основы организации аварийно-спасательных работ при ликвидации последствий чрезвычайных обстоятельств
  • Раздел VI. Экстремальные ситуации криминального характера
  • Тема 10. Основы безопасности жизнедеятельности в городских условиях План
  • 1. Общая классификация опасностей (признаки и виды).
  • 3. Естественные опасности
  • 4. Техногенные опасности
  • 5. Антропогенные опасности
  • 6. Система обеспечения безопасности
  • Тема 11. Основы личной безопасности от преступлений террористического характера План
  • Терроризм и его виды
  • 1.2. Формы терроризма
  • 1.2.1 Меры защиты при проведении террористических актов
  • 1.2.2 Угон воздушного судна и иное преступное вмешательство в деятельность гражданской авиации
  • 1.2.3 Захват и угон морского судна, и иное преступное вмешательство в деятельность международного судоходства
  • 1.2.4 Захват заложников
  • Необходимо усвоить следующие правила:
  • 1.2.5 Иные формы терроризма
  • 1.2.6 Причины терроризма
  • 2. Нападение на особо опасные объекты.
  • 2.1 Категория опасных объектов
  • 2.2 Обеспечение антитеррористической защищенности промышленных объектов и объектов инфраструктуры
  • 3. Понятие микроклимата, его параметры.

    Микроклимат производственных помещений - это микроклиматические условия производственной среды (температура, влажность, давление, скорость движения воздуха, тепловое излучение) помещений, которые оказывают влияние на тепловую стабильность организма человека в процессе труда.

    Исследования показали, что человек может жить при атмосферном давлении 560-950 мм ртутного столба. Атмосферное давление на уровне моря 760 мм ртутного столба. При данном давлении человек испытывает комфортность. Как повышение, так и понижение атмосферного давления на большинство людей оказывает негативное влияние. С понижением давления ниже 700 мм ртутного столба наступает кислородное голодание, что сказывается на работе головного мозга и центральной нервной системы.

    3.1 Общие требования к параметрам микроклимата

    Параметры микроклимата в соответствии с ГОСТ 12.1.005-88 и СанПиН 2.2.4. 548-96 должны обеспечивать сохранение теплового баланса человека с окружающей производственной средой и поддержание оптимального или до пустимого теплового состояния организма.

    Параметрами, характеризующими микроклимат в производственных помещениях, являются:

    Температура воздуха, t˚C

    Температура поверхностей (стен, потолка, пола, ограждений оборудования и т.п.), tп ˚C

    Относительная влажность воздуха, W %

    Скорость движения воздуха, V м/с

    Интенсивность теплового облучения, P Вт/м 2

    Абсолютная влажность А – это количество водяных паров, содержащихся в 1 м3. воздуха. Максимальная влажность F max – количество водяных паров (в кг), которое полностью насыщает 1 м3 воздуха при данной температуре (упругость водяных паров).

    Относительная влажность – это отношение абсолютной влажности к максимальной влажности, выраженной в процентах:

    Когда воздух полностью насыщен водяными парами, то есть A=Fmax (во время тумана), относительная влажность воздуха φ =100%.

    На организм человека и условия его работы оказывает влияние также средняя температура всех поверхностей, ограничивающих помещение, она имеет важное гигиеническое значение.

    Другим важным параметром является скорость движения воздуха. При повышенной температуре скорость воздуха способствует охлаждению, а при низких температурах переохлаждению, поэтому она должна быть ограниченной, в зависимости от температурной среды.

    Санитарно - гигиенические, метеорологические и микроклиматические условия не только влияют на состояние организма, но и определяют организацию труда, то есть, продолжительность и периодичность отдыха работника и обогрева помещения.

    Таким образом, санитарно-гигиенические параметры воздуха рабочей зоны могут быть физически опасными и вредными производственными факторами, оказывающими существенное влияние на технико-экономические показатели производства.

    3.2 Терморегуляция организма

    Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение нормальных метеорологических условий в помещениях, оказывающих большое влияние на тепловое самочувствие человека. Метеорологические условия, или микроклимат, зависят от теплофизических особенностей технологического процесса, местного климата, сезона года, условий отопления (в холодный период года) и вентиляции в помещениях.

    Трудовая деятельность человека сопровождается непрерывным выделением теплоты в окружающую среду. Её количество зависит от степени физического напряжения в определённых климатических условиях и составляет от 85 Вт (в состоянии покоя) до 500 Вт (при тяжёлой работе). Для того, чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву, либо к переохлаждению организма и, как следствие, к потере работоспособности, быстрой утомляемости, потере сознания, к несчастным случаям и профзаболеваниям.

    Нормальное тепловое самочувствие имеет место, когда тепловыделения человека Qтч полностью воспринимаются окружающей средой Qтс, т.е. когда имеет место тепловом баланс Qтч = Qтс, то в этом случае температура внутренних органов остаётся постоянной 36, 5 ˚C.

    Если теплопродукция организма не может быть полностью передана окружающей среде (Qтч>Qтс), происходит рост температуры внутренних органов и такое тепловое самочувствие характеризуется понятием жарко . Теплоизоляция человека (например, в тёплой и плотной одежде), находящегося в состоянии покоя (сидя или лёжа) от окружающей среды, приведёт к повышению его температуры уже через 1 час на 1,2˚C. А то же самое при выполнении работы средней тяжести, вызовет повышение температуры на 5 ˚C, т.е. приблизится к критической (+43˚C) температуре.

    В случае, когда окружающая среда воспринимает больше теплоты, чем её вырабатывает человек (Qтчхолодно .

    Терморегуляция организма - физиологический процесс поддержания температуры тела в границах от 36,6 до 37,2°С. Основной путь поддержания равновесия - теплоотдача.

    Теплоотдача идёт следующими путями:

    1 . Излучение тепла (Q изл) телом человека по отношению к окружающим поверхностям, имеющим меньшую температуру. Это основной путь отдачи тепла в производственных условиях. Излучением отдают тепло все тела, имеющие температуру выше абсолютного нуля - 273°С. Человек отдаёт тепло, когда температура окружающих его предметов ниже температуры наружных слоёв одежды (27 - 28°С) или открытой кожи.

    2. Проведение (Q п) - отдача тепла предметам, непосредственно соприкасающемся с телом человека.

    3. Конвекция (Q к) - передача тепла через воздушную среду. Человек нагревает вокруг себя слой воздуха толщиной 4 - 8 мм путём проведения тепла. Нагрев более отдалённых слоёв идёт за счёт естественного и принудительного замещения прилегающих к телу более тёплых слоёв воздуха более холодными. При подвижном воздухе теплоотдача увеличивается в несколько раз.

    4. Испарение воды с поверхности кожи и слизистой оболочки верхних дыхательных путей (Q ис.)- основной путь отдачи тепла при повышенной температуре воздуха, особенно, когда затрудняется или прекращается отдача излучением или конвекцией. В обычных условиях испарение идет в результате неощутимого потоотделения на большей части поверхности тела в результате диффузии воды без активного участия потовых желёз. В целом организм теряет 0,6 л воды в сутки. При выполнении физической работы в условиях повышенной температуры воздуха идёт повышенное потоотделение, при котором количество теряемой жидкости 10 - 12 л за смену. Если пот не успел испариться, он покрывает кожу влажным слоем, что не способствует отдаче тепла, и создаются условия для перегрева организма. В этом случае идёт потеря воды и солей. Это приводит к обезвоживанию организма, потере минеральных солей и водо-растворимых витаминов (С, В1, В2). Такие потери влаги приводят к сгущению крови, нарушению солевого обмена.

    При тяжёлой работе в условиях повышенной температуры воздуха теряется 30 - 40 г соли NaCl (всего в организме 140 г NaCl). Дальнейшая потеря солей вызывает мышечные спазмы, судороги.

    5. Тепловое (инфракрасное) излучение. В условиях производства может присутствовать тепловое (инфракрасное) излучение - невидимое электромагнитное излучение. Источник - любое нагретое тело.

    В зависимости от длины волны оно делится на коротковолновое, средневолновое, длинноволновое. Проходя через воздух эти лучи его не нагревают, но, поглотившись твёрдым телом, лучистая энергия переходит в тепловую.

    Особенности действия лучистого тепла зависят от длины волны инфракрасного излучения. Длинные волны (1,4 - 10 мкм) поглощаются слоем кожи, вызывая калящий эффект. Короткие волны проникают глубоко внутрь организма, нагревая внутренние органы, мозг, кровь. Длительное воздействие повышенной температуры в сочетании с большой влажностью может привести к перегреванию организма. При этом у человека возникает головная боль, тошнота, сердцебиение, общая слабость, рвота, потоотделение, частое дыхание, тахикардия. При работе на воздухе, в результате облучения головы инфракрасными лучами коротковолнового диапазона, происходит тяжелое поражение мозговой ткани вплоть до выраженного менингита и энцефалита. В тяжелых случаях наблюдаются судороги, бред, потеря сознания. При этом температура тела остается нормальной или повышается незначительно.

    Нормальный теплообмен (т.е. тепловой комфорт) образуется тогда, когда

    Q тч=Q к + Q т + Q изл + Q исп + Q в = Q тс

    При значительном превышении теплопродукции организма человека (Qтч»Qтс) возникает перегрев (гипертермия), угрожающая жизни и здоровью человека; при значительном уменьшении теплопродукции организма по сравнению с поглотительными возможностями среды, возникает переохлаждение (гипотермия), опасное для здоровья и жизни человека.

    В условиях теплового гомеостаза баланс тепла в организме гомойотермов описывается выражением:

    ΔQ = M - E ± C ± R ± K ± W = 0

    где ΔQ - изменения теплосодержания; М - продукция тепла, а остальные члены уравнения - отдача тепла организмом во внешнюю среду различными путями. В условиях температурного комфорта ΔQ = 0.

    Здесь сразу же необходимо оговорить то существенное современное понимание гомеостаза, в соответствии с которым любой его вид, в том числе и тепловой гомеостаз, выражается не в жесткой фиксации тех или иных показателей на определенном уровне, а скорее в их колебании вокруг среднего значения. Это принципиальное соображение, по крайней мере для человека, подтверждается еще и фактически - феноменом крайней нестабильности теплового обмена тела человека.

    О. Бартон и А. Эдхолм (1957) указывают, что даже при кратковременных исследованиях в специальных климатических камерах со строгим контролем метеорологических условий и состояния исследуемых термостабильное состояние не достигается на протяжении нескольких часов. Выражение 1 есть полное уравнение теплового баланса, но эволюционно - биологическое значение его составляющих далеко не одинаково. Так, продукция тепла в организме (М) генетически не обусловлена тепловым обменом, а является следствием коренных процессов, характеризующих жизнедеятельность. Живой организм характеризуется непрерывным обменом веществ и энергии, который происходит в соответствии с известным уравнением термодинамики:

    ΔН = ΔZ + TΔS

    где ΔН - изменение энтальпии - меры общего запаса химически превращаемой энергии; ΔZ - изменение термодинамического потенциала или свободной энергии - части энтальпии системы, которая может быть с пользой использована для совершения работы; ΔS - изменения энтропии (термодинамической) для данных условий - меры неопределенности системы, зависящей от действия межмолекулярных сил и теплового движения и измеряемой величиной рассеяния потенциальной энергии химических веществ в виде тепла; Т - °К (градусы Кельвина).

    Источником теплопродукции (М), таким образом, служат процессы обмена веществ и энергии, непрерывно совершающиеся в организме. В ходе расщепления энергетических материалов энергия, кумулируемая в макроэргических соединениях, может рассеиваться в виде тепла ("первичная теплота"), либо превращаться в те или иные виды работы, в конечном счете также переходящие в тепловую энергию. Однако основное тепло организм получает в результате осуществления тех или иных видов работы (70% теплопродукции), в то время как теплорассеяние составляет лишь 30%.

    Таблица 3. 1. Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)

    Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)

    Орган

    Масса, кг

    Артериовенозная разница по кислороду, см 3

    Потребление кислорода

    абсолютное, см 3 /мин

    относительное

    см 3 /(мин·100 г)

    % от общего

    Скелетные мышцы

    Другие части тела

    Тело в целом

    Для проблемы регуляции теплового обмена существенный интерес представляют источники продукции тепла в покое и при мышечной работе. Образование тепла неразрывно связано с энергетическим обменом. В условиях нормальной жизнедятельности в покое о величине теплопродукции можно судить по интенсивности окислительных процессов (потреблению кислорода). Соответствующие данные приведены в табл. 3.1

    В покое наиболее высокий вклад в теплопродукцию (58,8%) обеспечивается печенью, мозгом и скелетными мышцами. При этом в первых двух органах высоки и относительные показатели энергетического обмена (артериовенозная разница по кислороду и его относительное потребление органом); в то же время интенсивность обмена в покоящихся мышцах невелика и валовое значение их теплопродукции определяется просто значительной массой мышечпой ткани.

    Структура энергозатрат в тканях (Иванов К. П., 1972) показывает, что из 1600 ккал/сут (в условиях основного обмена) около 900 ккал улавливается в форме макроэргических связей АТФ, 215 ккал идет на поддержание неравновесных ионных концентраций по обе стороны клеточных мембран, 415 ккал обеспечивает процессы обновления белков, липидов и полисахаридов, и лишь 270 ккал затрачивается на сокращение сердечной мышцы и дыхательных мышц. Вместе с тем все эти процессы характеризуются низкими величинами КПД, например синтез белка имеет КПД 10-13%, транспорт ионов - 20%, синтез АТФ - 50% и т. д. Таким образом, происходит накопление "первичного" и "вторичного" тепла.

    При совершении мышечной работы энергетический обмен в мышцах резко возрастает, о чем можно судить и по такому косвенному показателю, как величина минутного объема крови, протекающей через мышцы в покое и при их сокращении: в первом случае она равна 840 мл/мин, а во втором - 12 500 мл/мин, что указывает на повышение потребления кислорода мышцами по крайней мере в 5 раз. Таким образом, увеличение теплопродукции при мышечной работе обусловлено повышенным образованием тепла в первую очередь в ткани скелетных мышц. Однако следует учитывать еще и адекватное возрастание энергетических процессов (и теплопродукции) в органах, обеспечивающих мышечную работу - в головном и спинном мозге, сердце, дыхательных мышцах, в печени и других органах.

    В условиях термического комфорта важнейшее значение в термогенезе имеют произвольные мышечные движения, потому что именно к ним, как гениально заметил И. М. Сеченов (1863), сводится "все бесконечное разнообразие внешних проявлений мозговой деятельности". Измерения энерготрат при "обыденных" двигательных актах человека показывают их различную (иногда и значительную) термогенетическую стоимость (Кандрор И. С., 1968).

    В зависимости от поведения человека даже на протяжении нескольких часов сдвиги теплопродукции могут носить характер быстрых и значительных пиков.

    Параметры микроклимата регламентируются с учётом тяжести физического труда и времени года.

    Изменение параметров микроклимата вызывает изменение соотношения величин теплопродукции Q. Так, при нормальных условиях во время лёгкой физической работы доля Qк+ Qтсоставляет около 30 % всей теплоотдачи, Qизл около 45 %, Qисп=20 % и Qв=5 %.

    Чем выше температура окружающих предметов, тем меньше теплоотдача излучением. При повышении температуры окружающего воздуха до температуры тела человека и выше, эффективность теплоотдачи теплопроводностью Qт, конвекциейQ ки излучением Qизл уменьшается и решающее значение приобретает отвод тепла путём испарения влаги (пота) с поверхности тела Qисп. Но интенсивность испарения влаги с поверхности тела человека зависит от относительной влажности Wи скорости движения окружающего воздухаV.

    При Wболее 75 % процесс испарения влаги резко замедляется, а при W=100 % прекращается полностью. Вместе с этим замедляется, а затем и прекращается теплоотдача Qисп. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое «проливное» потоотделение, изнуряющее организм и не создаёт необходимую теплоотдачу. Происходит обезвоживание организма, которое влечёт за собой нарушение остроты зрения и умственной деятельности. Потеря влаги на 15-20% приводит к смертельному исходу.

    Недостаточная влажность (<20%) также оказывает неблагоприятное воздействие на организм, вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания, растрескивания и кровотечения.

    Увеличение скорости воздуха υ всегда приводит к увеличению теплоотдачи в окружающую среду.

    При лёгкой работе разрешается более высокая температура и меньшая скорость движения воздуха.

    В тёплый период года (при температуре вне помещения +10°С и выше) температура в производственном помещении должна быть не более +28°С при лёгкой работе и не более +26°С при тяжёлой работе. Если вне помещения температура более +25°С, то в помещении допускается повышение температуры до +33°С.

    Согласно ДСН 3.3.6 042-99 «Санитарные нормы микроклимата производственных помещений», по степени влияния на тепловое состояние организма человека, микроклиматические условия подразделяются на оптимальные и допустимые. Для рабочей зоны производственных помещений устанавливаются оптимальные и допустимые микроклиматические условия с учетом тяжести выполняемой работы и периода года (табл.3.2).

    Оптимальные микроклиматические условия - это такие условия микроклимата, которые при длительном и систематическом влиянии на человека обеспечивают сохранение теплового состояния организма без активной работы терморегуляции. Они сохраняют обеспечение самочувствие теплового комфорта и создание высокого уровня производительности труда (табл. 3.2.).

    Допустимые микроклиматические условия, которые при длительном и систематическом влиянии на человека могут вызвать изменения теплового состояния организма, но нормализуются и сопровождаются напряженной работой механизмов терморегуляции в границах физиологической адаптации (табл. 3.2.). При этом не возникает нарушений или ухудшения состояния здоровья, но наблюдается дискомфортное тепловосприятие, ухудшение самочувствия и снижение работоспособности.

    Условия микроклимата, выходящие за допустимые границы называются критическими и ведут, как правило, к серьезным нарушениям в состоянии организма человека.

    Оптимальные условия микроклимата создаются для постоянных рабочих мест.

    Таблица 3. 2

    Оптимальные величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений.

    Период года

    Температура воздуха, 0 С

    Относительная влажность, %

    Скорость движения, м/с

    Холодный период года

    Легкая I-а

    Легкая I-б

    Средней тяжести II-а

    Средней тяжести II-б

    Тяжелая III

    Теплый период года

    Легкая I-а

    Легкая I-б

    Средней тяжести II-а

    Средней тяжести II-б

    Тяжелая III

    Допустимые значения микроклиматических условий устанавливаются в случае, когда на рабочем месте не удается обеспечить оптимальные условия микроклимата согласно технологическим требованиям производства или экономической целесообразности.

    Перепад температуры воздуха по высоте рабочей зоны при обеспечении допустимых условий микроклимата не должна быть более 3-х градусов для всех категорий работ, а по горизонтали не должен выходить за пределы допустимых температур категорий работ.

    Внешняя среда, окружающая человека на производстве, влияет на организм человека, на его физиологические функции, психику, производительность труда.



    Понравилась статья? Поделитесь с друзьями!