Регенеративные приемники схемы. Простой транзисторный регенеративный приёмник


Приобрёл я как-то по случаю добротно сделанную экранированную катушку ГПД от Р-250 (много их появилось на наших блошиных рынках — это сколько же Р-250 «разбомбили» на цветмет!), индуктивностью 31 мкГн, добавил КПЕ с верньером 1/40 , пару транзисторов/резисторов/конденсаторов и через пару часов на макете (см. фото) получился вполне приличный регенератор диапазона 2,8-3,8 МГц.

Благодаря качественной катушке стабильность частоты настройки на высоте. Что любопытно, хотя и субъективно, — слушать на него АМ на «стометровке» намного комфортнее, чем на на большие и тяжелые РПС, Р-326М, Р-309. При этом приемник по питанию очень экономный — ток потребления всего 3 мА!

Усиление и чувствительность получились (при с/шум=10дБ) при АМ порядка 150 тыс. и 3-5 мкВ, CW/SSB соответственно 1,5 млн и 1-2 мкВ (вероятно, она выше, но достоверно измерить трудно, т.к. очень высок принимаемый на измерительные провода уровень эфирных шумов и помех). Очень плавный подход к точке генерации (особенно если использовать многооборотный резистор R1, но и с обычным потенциометром получается неплохо) обеспечил прекрасную селективность — полоса пропускания может быть сужена примерно до 200-300 Гц, т.е. добротность достигает порядка 12-15 тыс!

Рассмотрим подробнее принципиальную схему приёмника, которая приведена на рис.1. В нём функции регенерации (VT1) и детектирования (VT2) разделены между разными каскадами, что по сравнению с традиционно выполненным регенерирующим детектором позволило заметно (в разы) повысить максимально достижимую стабильную добротность и, соответственно, чувствительность и избирательность. Эти цифры основаны на моем эксперименте, когда я на тех же компонентах испытал регенерирующий истоковый детектор, который в общем-то неплохо работает, но с ним я не смог получить стабильную полосу пропускания уже 800 Гц (т.е. максимальная добротность порядка 4-4,5 тыс.) — далее срывается в генерацию. Поэтому чувствительность и усиление получились примерно в 2 раза ниже от первоначального.

Сигнал с антенны через плавный аттенюатор на потенциометре R4 поступает на конденсатор С7 большой емкости (он должен быть керамическим или КСО), образующий совместно с другими контурными конденсаторами емкостной делитель с большим коэффициентом деления. Поэтому собственное излучение в эфир в автодинном режиме мизерное, а частота настройки приемника слабо зависит как от длины антенны (её коэффициент включения в контур очень мал — примерно примерно 1/110 по напряжению, или 1/12 тыс. по сопротивлению), так и от манипуляций с аттенюатором R4. Больший плюс в том, что при таком включении антенны для верхних частот контур представляет собой ФНЧ третьего порядка, который эффективно давит внедиапазонные помехи, в том числе от УКВ/FM диапазонов.

Собственно сам регенератор выполнен по схеме емкостной трехточки (вариант Клаппа) на транзисторе VT1. Контур состоит из катушки индуктивности L1 и конденсаторов С1,С2,С4,С5,С6,С7. Частоту гетеродина можно перестраивать в диапазоне 2900-3800 кГц(задаётся растягивающим конденсатором С2, с некоторым запасом по краям) конденсатором переменной емкости (КПЕ) С4. Уровень регенерации регулируется переменным резистором R1 путём изменения напряжения смещения на базе VT1.

По сравнению с полевыми транзисторами у биполярных при равных токах существенно (почти на порядок) выше крутизна, а, следовательно, за счёт меньшего включения в контур можно получить лучшие результаты как по стабильности режима регенерации, так и минимизировать влияние регулировки уровня регенерации на частоту настройки. Последнее свойство очень важно для комфортного пользования регенератором, т.к. у транзисторов (особенно у биполярных), в отличие от ламп, межэлектродные ёмкости существенно зависят от рабочих напряжений и токов. И обеспечивается оно в двух направлениях.

1.Обеспечивается высокая стабильность параметров транзистора VT1 введением глубокой ООС по постоянному току (так называемая базово-эмиттерная стабилизация) R2R3R5R6. VD1 обеспечивает термостабилизацию режима VT1 по постоянному току и повышает плавность регулировки при малых значениях эмиттерного тока (так называемое «токовое зеркало»), т.е. фактически — плавность регулировки уровня регенерации.

2.Чем выше начальная добротность катушки и лучше усилительные свойства транзистора (выше соотношение Н21е/S на рабочей частоте), тем допустимо меньшее включение транзистора в контур, а, следовательно, будет меньше его вредное (дестабилизирующее и нелинейное) влияние на полученную (регенерируемую) добротность и стабильность частоты. В нашем случае транзистор включен в контур через два емкостных делителя

— делитель (разветвитель) контурных токов между двумя параллельно включенными цепочками С2С4 и С1С5С6, имеющий коэффициент деления контурного тока Кдт=С156/(С156+C24), где С24 и С156 – емкость цепочек последовательно включенных конденсаторов С2С4 и С1С5С6

— делитель контурного напряжения С1С5С6, имеющий имеющий коэффициент деления контурного напряжения Кдн=С1/(С1+С5)

И поэтому общий коэффциент включения транзистора в контур будет равен произведению этих величин Кд=Кдт*Кдн, а коэффициент трансформации входного сопротивления и собственной емкости транзистора в контур равен квадрату этого соотношения.

К примеру, при приеме в автодинном режиме после слабых станций включились мощные и мы для улучшения качества приема (повышения помехоустойчивости) увеличили ручкой Regen ток VT1, тем самым подняли уровень своего гетеродина в несколько раз. При этом межэлетродные емкости транзистора VT1 изменятся примерно на 2-3 пФ (типичное значение для BC547, 2N3904 и т.п.). Давайте оценим насколько при этом изменится частота приёма у нашего приёмника.

Для простоты расчёта рассмотрим случай, когда емкости контурных ветвей равны, например на частоте приёма 3,52 МГц, т.е. С24=С156=33 пФ, при этом Кдт=1/2.

Кдн=36/(1000+36)=0,035, а коэффициент трансформации изменений собственной емкости транзистора в контур равен К=(Кдт*Кдн)^2=0,0003, т.о. изменение контурной емкости, вызванное изменением режима работы транзистора VT1 dСк=3 пФ*0,0003=0,001 пф.

При этом относительное изменение контурной емкости составит

dСк/Ск=0,001 пФ/66 пФ=15*10^(-6) или 15 ppm. При этом изменение резонансной частоты контура будет в 2 раза меньше, т.е. 7,5 ppm или в абсолютных величинах

dF=3,52 МГц*7,5*10^(-6)= 26,4 Гц!!!

Как видим, даже большие изменения режима работы транзистора не приведут к существенным изменениям частоты приёма.

На практике величину С1 выбираем минимально возможной – такой, чтобы устойчивая генерация на наивысшей рабочей частоте начиналась при напряжении на движке R1 примерно +6…+7 вольт. Диапазон(ы) рабочих частот можно пересчитать под свои потребности при помощи программки , подставляя в ячейку собственной емкости генератора величину 38-40 пФ.

Детектирование сигнала осуществляется полевым транзистором (ПТ) VT2, включенным по схеме истокового детектора(ИД), к преимуществам которого можно отнести

— высокое входное сопротивление, хорошую линейность детектирования (за счёт 100% ООС по огибающей) в режиме АМ

— достаточно высокую линейность смесителя и чистоту спектра преобразования (за счет квадратичной ВАХ) в автодинном режиме.

Малый ток стока VT2 (порядка десятков мкА — определяется высокоомным резистором R7)

повышает уровень эффективного (линейного, пратически без потерь) детектирования АМ сигнала до 50-70 мВэфф. При меньших уровнях входного АМ сигнала детектирование будет проходить уже на квадратичном участке ВАХ, качество выходного сигнала остаётся ещё вполне приличным, а вот выходной уровень пропорционально квадрату уменьшения уровня входного сигнала. К примеру, при входном сигнале порядка 3 мВ, на выходе ИД будет примерно 50 мкВ.

Поэтому для повышения чувствительности приемника можно применить УНЧ с большим усилением. Это тем более актуально для работы в автодинном режиме, когда (аналогично ППП) основное усиление обеспечивает именно УНЧ. В истоковом детекторе можно применять практически любые ПТ, но тогда, вероятно, потребуется подобрать истоковый резистор R7 до получения тока стока в пределах 50-100мкА

С выхода детектора сигнал через однозвенный ФНЧ R9C14 с полосой среза порядка 3 кГц поступает на двухкаскадный УНЧ. Он собран по типовой схеме на современных малошумящих транзисторах VT3, VT4 с высоким коэффициентом передачи тока, включенных по схеме с ОЭ и с непосредственной связью между каскадами. Благодаря стопроцентной отрицательной обратной связи по постоянному току режимы транзисторов по постоянному току устанавливаются автоматически и мало зависят от колебаний температуры и напряжения питания. Нагрузкой УЗЧ служат высокоомные телефоны ТОН-2 с сопротивлением по постоянному току 4,4 кОм, которые включаются непосредственно в коллекторную цепь транзистора VT4 (через разъем Х3), при этом через их катушки протекает и переменный ток сигнала и постоянный ток транзистора, что дополнительно подмагничивает телефоны и улучшает их работу. Конденсатор С27 совместно с индуктивностью последовательно включенных наушников образует резонасный контур с частотой примерно 1,2 кГц, но из-за большого активного сопротивления обмоток добротность последнего невысока — полоса пропускания по уровню -6 дБ примерно 400-2800 Гц, поэтому его влияние на общую АЧХ не очень существенно и носит характер вспомогательной фильтрации и небольшой коррекции АЧХ.

Усиление УНЧ ограничено R12 на уровне 10 тыс., больше не надо. Регулировка громкости выполнена на потенциометре R13 и осуществляется путём увеличения глубины ООС примерно 50-70 раз, что в сочетании с плавным аттенюатором на входе вполне достаточно для комфортного приёма любых уровней входного сигнала, но и (это важно с учётом вероятных больших перепадов уровней продетектированного сигнала в режимах SSB и АМ) в те же 50-70 раз повышается перегрузочная способность УНЧ.

В качестве VT3,VT4 применимы любые кремниевые с коэффициентом передачи тока на менее 150, желательно малошумящие, например отечественные КТ3102Д,Е или широко распространенные недорогие импортные 2N3904, BC547-549, 2SC1815 и т.п. Головные телефоны электромагнитные, обязательно высокоомные (с катушками электромагнитов индуктивностью примерно 0,5Гн и сопротивлением по­стоянному току 1500…2200 Ом), например, типа ТОН-1, ТОН-2, ТОН-2м, ТА-4, ТА-56м. При согласно-последовательном включении, т.е «+»одного соединен с»- «другого, имеют общее сопротивление по постоянному току 3,2-4,4 кОм, по переменному примерно 10-12 кОм на частоте 1 кГц. Вилка включения телефонов заменяется стандартным трех- или пятиштырьковым разъемом от звукозаписывающей бытовой аппаратуры (СГ-3, СГ-5 или аналогичные импортные) – на схеме XS3. Между выводами 2 и 3 штыревой части разъема устанавливают перемычку, которая служит для подключения батареи питания GB1. При отсоединении телефонов питание приемника будет отключаться автоматически. Плюсовый провод телефонов соединяется с выводом 2 разъёма, что обеспечит сложение магнитных потоков, создаваемых током подмагничивания и постоянными магнитами телефонов.

Чертёж печатной платы мной не разрабатывался, но , разработанный нашим болгарским коллегой LZ2XL(см. фото), который один из первых повторил

«Привет Сергей, а приёмник ваш интересный оказался. После ужина сделал плату и весь вечер было одно удовольствие. Правда у меня подходящей катушки с вожженой медью не оказалось и приемник работал чуть выше — в пределах 5.8-8.2 МГц. На сороковке не плохо работает, правда без аттенюатора вещалки перекрывают всё.

Аттенюатор обязателен, особенно на участке сороковки. Если антенна включена без атенюатора вещалки перекривают весь диапазон. Здесь сама антенна включена немного необычно и оригинально. В этом включение аттенюатор не влияет на точку регенераций, а это хорошо, сам подход к регенераций особенно мягкий. На SSB нет искажений из-за синхронизаций регенератора. После точки генерации сам приемник ведет себя хорошо, соседние сильные сигналы не мешают.»

Ещё один наш коллега Александр (ник staradio ) повторил приёмник, применив самодельную катушку большого диаметра (см. фото монтажа и внешнего вида)


Результатом испытаний он доволен.

Испытания приемника, проведённый мной в последствии (опробовал и на провод 10 м на высоте примерно 10 м с балкона 4-го этажа на дерево, и на наклонный WINDOM 41 м (с крыши девятиэтажки на фонарный столб) с экранированным снижением) показали, при размещении большой антенны около уличного освещения в вечернее время появляются довольно заметные НЧ наводки (фон), поэтому антенна подключалась через емкость 510 пФ, но можно поставить и двухзвенный ФВЧ (две емкости по 510 пФ и дроссель 50-100 мкГн).

В последнее время в рамках ретроспективы довольно часто пишут о регенеративных приемниках . C этими интересными публикациями можно ознакомиться и в интернете.
Один из регенеративных приемников был повторен по публикации в журнале «Радио» № 2, 2007, с.75-76 . Впечатление от его работы самые благоприятные.

Отсутствие внешней антенны, широкий диапазон принимаемых частот КВ диапазона, достаточно высокая чувствительность и избирательность позволяют вести прием радиостанций с АМ и CW/SSB. При этом поражает чистота эфира, в отличие от привычных супергетеродинов, дающих шум не ниже 5 баллов в условиях приема в городской квартире.
К особенностям настройки на станцию быстро привыкаешь. Самая главная проблема в хорошем верньере. Для растяжки диапазона в схему введен растягивающий конденсатор, позволяющий при простейшем верньере легко принимать радиостанции в диапазоне популярного любительского диапазона 20 м и двух гражданских вещательных 25 и 19 м.
Как и ранее в подобных публикациях приведем лишь слегка измененную схему (рис.1) и технологическую сторону создания приемника. В остальном приемник собирался по рекомендациям, приведенным в .


Рис.1
В принципиальную схему приемника, как уже упоминалось выше, введен растягивающий конденсатор С11, что значительно упростило настройку приемника, но при этом сузился диапазон принимаемых частот.
В исходном варианте выполненный по рекомендациям в приемник принимал в диапазоне от 5,9 до 18 мГц. Здесь следует заметить, что верхняя граница диапазона зависит от толщины применяемого провода антенны-катушки и минимальной емкости КПЕ С1. При диаметре провода ПЭВ-2 0,9 мм и емкости одной секции КПЕ 12-495 пФ с растягивающим конденсатором С11=51 пФ приемник стал принимать в диапазоне 11,7-16 мГц.

Требуемый диаметр катушки-антенны достигнут намоткой на оправке, роль которой выполнила 1,5 литровая бутылка с минеральной водой. После намотки витки скрепляются нитками в нескольких местах и фиксируются каплями эпоксидного клея. После затвердевания эпоксидки катушка снимается с бутылки. При намотке следует не забыть оставить по 5 см провода на выводы, которые в процессе монтажа будут подпаиваться к КПЕ, общему проводу приемника и конденсатору С11.
На принципиальной схеме также указан конденсатор С12 согласно рекомендации в .

Рис.2

Плата приемника выполнена из двустороннего фольгированного стеклотекстолита размером 43х90 мм. Ее эскиз показан на рис.2. Нижний и верхний слой фольги соединены и являются общим проводом. Монтаж проведен на пятачках, выполненных по известному методу Жутяева. При пайке на пятачке оставляют самый длинный вывод из числа припаиваемых к нему радиодеталей. В дальнейшем к нему, как к стойке, припаивают выводы транзисторов, что позволяет их легко заменять при подборе или подгонке параметров (рис.3 и рис.4).



Рис.3




Рис.4

Транзисторы следует подобрать по рекомендациям, изложенным в . VT2-VT3 устанавливались из числа транзисторов с самым высоким h21е (около 500) - оказались в наличии ВЧ малошумящие С1345Е. VT4 также подбирался по h21е (300-400) с максимальным паспортным Ik=200 мА (отечественные КТ3102 при работе нагревались довольно значительно).
Конденсаторы С2, С3, С4, С11 типа КТ или КЛС, остальные - керамические и импортные электролитические.

Напряжения, при указанных номиналах деталей, должны установиться автоматически. В случае необходимости указанные на схеме напряжения подбираются резисторами R8 и R10.
Некоторые АМ радиостанции принимаются настолько громко, что без регулятора громкости (по НЧ) не обойтись. В схеме его нет. Уменьшить силу звукового сигнала можно, конечно, с помощью сопротивления регенератора R4. Однако, это не всегда эффективно и удобно (не всегда достигается порог генерации). Поэтому удобно применять готовые гарнитуры от ПК с наличием такого регулятора громкости в двойном кабеле гарнитуры. Литой 3,5 мм штекер гарнитуры отрезают и заменяют его на новый с разборным корпусом. Внутри корпуса штекера проводники от телефонов гарнитуры соединяют последовательно, чем достигается рекомендованное сопротивление нагрузки > 64 Ом.

Как видно на фото (рис. 5 - 8), приемник размещен в корпусе, верхняя и нижняя стенки которого сделаны из фанеры, а передняя - из двухстороннего стеклотекстолита, слои фольги которого соединены, и монтажная плата припаяна к ним. Конструкция простейшего верньера видна на фото.
Радиостанции можно принимать и на внешнюю (наружную) антенну. При этом чувствительность приемника значительно увеличивается. Связь антенны с контуром (катушкой) осуществляется индуктивно. Для этого от разъема - гнезда антенны, укрепленного на верхней стенке приемника, изолированным проводом делают 1-2 витка вокруг витков катушки-антенны.





Источники:
1. Первый КВ приемник. Подготовил Б.Степанов. - Радио 2007, № 2, с.75-76.
2. С.Коваленко. Регенеративный КВ приемник. - Радио №2, 199, с.21.

Пик эпохи регенеративных при­ёмников в профессиональной и любительской радиоаппаратуре при­ходится на конец 20-х или начало 30-х годов прошлого века. К началу Второй мировой войны их начали интенсивно вытеснять супергетеро­дины, а после войны "регенераторы" сохранились практически только в радиолюбительской практике. Не­сложные в изготовлении и облада­ющие неплохими параметрами они вполне подходили для самостоятель­ного изготовления начинающими ра­диолюбителями.

В 60-е годы в любительских кон­струкциях начинающих радиолюбителей им на смену пришли приёмники прямого преобразования. Но в 90-е годы снова наблюдается определён­ный рост интереса у радиолюбителей к регенеративным приёмникам. Бо­лее того, некоторые фирмы даже выпускают подобную аппаратуру для начинающих радиолюбителей. Про­шло уже немало времени, но интерес к этим конструкциям у радиолюбите­лей сохраняется до сих пор.

На рис. 1 показана схема регене­ративного KB-приёмника. Его описа­ние было опубликовано в американ­ском журнале QEX в статье "Кон­струирование высококачественного регенеративного приёмника" (High Performance Regenerative Receiver Design. Charles Kitchin, N1TEV. - QEX, November-December, 1988, p. 24- 36).

В этой статье проанализированы различные способы регулировки обратной связи в таких приёмниках и отмечено, что получившие наиболь­шее распространение удобные спо­собы, которые связаны с изменением режима регенеративного каскада по постоянному току, - не самые луч­шие. Более устойчиво вблизи порога регенерации работают каскады, где регулировка обратной связи осу­ществляется конденсатором переменной ёмкости (КПЕ). Именно он и применён в описываемом приёмнике.

Чтобы избежать излучения регене­ративного каскада в антенну и исклю­чить влияние её параметров на рабо­ту этого каскада, приёмник имеет на входе широкополосный усилитель высокой частоты на транзисторе VT1. Режим работы транзистора по посто­янному току задаёт резистор R1 в цепи его эмиттера.

Регенеративный каскад выполнен на полевом транзисторе VT2. В автор­ском варианте приёмник рассчитан на работу в двух КВ-поддиапазонах, перекрывающих полосу частот от 3 до 13 МГц. Сдвоенным КПЕ С4 от переносного транзисторного радиопри­ёмника осуществляется грубая на­стройка на рабочую частоту. На высо­кочастотном поддиапазоне использу­ется секция С4Ь с максимальной ёмкостью 140 пф, а на низкочастот­ном поддиапазоне переключателем SA1 параллельно ему подключается вторая секция С4а с максимальной ёмкостью 365 пФ. Точная настройка на станции осуществляется конден­сатором С8. Необходимый уровень обратной связи устанавливают КПЕ с максимальной ёмкостью 140 пф.

Для устойчивой работы этого кас­када напряжение его питания +5 В стабилизировано (стабилитрон VD1).

Нагрузкой регенеративного каска­да для звуковых частот служит дрос­сель L3. Автор использовал здесь пер­вичную обмотку миниатюрного накаль­ного трансформатора. Её индуктив­ность неизвестна, но суммарную АЧХ на звуковых частотах для приёма CW, SSB и АМ-станций устанавливают кон­денсаторами С12-С14. Их ёмкости подбирают такими, чтобы наилучший приём CW-станций был в крайнем левом положении переключателя SA2, SSB-станций - в среднем его положе­нии, АМ-станций - в крайнем правом.

Выходной каскад усилителя звуковых частот выполнен на микросхеме DA1 по стандартной схеме её включения. Пе­реключателем SA3 к нему можно под­ключить либо встроенную динамичес­кую головку, либо головные телефоны.

Катушки индуктивности L1 и L2 (рис. 2) намотаны на каркасе диамет­ром 3,2 см (использован пластиковый контейнер от какого-то лекарства) и со­держат 4 и 16 витков соответственно. Расстояние между их обмотками - 6 мм. Отвод у катушки L2 сделан от вто­рого (считая снизу) витка.

Близкий аналог транзистора VT1 2N2222 - наш КТ3117А. Транзистор 2N2222 начали выпускать ещё полвека назад, но его до сих пор часто можно встретить в радиолюбительских кон­струкциях. У него довольно большое значение максимально допустимого тока коллектора (800 мА), однако здесь он работает при его малом значении (около 2,4 мА) и поэтому вместо него можно поставить любой кремниевый высокочастотный транзи­стор со статическим коэффициентом передачи тока не менее 100. А близкий аналог транзистора MPF102 (VT2) - наш КП303Е.

Номиналы резисторов R1 и R2 при­ведены для напряжения питания 6 В. При напряжении питания 9 В они должны быть соответственно 3,3 и 2 кОм, а при 12 В - 4,7 и 5 кОм.

Материал подготовил Б. СТЕПАНОВ, г. Москва



Понравилась статья? Поделитесь с друзьями!