Виды закрепления балок. Виды опор, какую расчетную схему выбрать

Рисунок 219.1 . Зависимость значений изгибающих моментов и прогибов от варианта опирания балки.

На рисунке 219.1.а показана балка с шарнирными опорами. Для такой балки максимальный изгибающий момент М и соответственно максимальные нормальные напряжения будут действовать в поперечном сечении, расположенном посредине пролета, при этом момент на опорах будет равен 0. На рисунке 1.б показана балка, имеющая такой же пролет и к балке приложена такая же нагрузка, как и к балке на рисунке 219.1.а. При этом для балки, изображенной на рисунке 219.1.б максимальные изгибающие моменты будут действовать на сечения, находящиеся на опорах, их значение будет в 1.5 раза меньше, чем для балки на шарнирных опорах, а максимальный прогиб f будет в 5 раз меньше.

Как видим разница ощутимая. А для железобетонных конструкций определение растянутых и сжатых областей особенно важно, так как железобетон это комплексный материал, в котором бетон, как искусственный камень, работает на сжимающие напряжения, а металлическая арматура устанавливается как правило в растягиваемой области, что позволяет не учитывать гибкость стержней и тем самым использовать прочностные свойства металла максимально. Таким образом правильное определение вида опор позволит сэкономить порядочное количество материала. Кроме того, так как любая балка, например, перемычка или плита перекрытия имеет определенные участки, предназначенные для опирания, то такую балку можно рассматривать как двухконсольную балку с двумя шарнирными опорами у которой опорные участки - это консоли балки, правда при относительно небольших размерах таких участков большого смысла в этом нет.

Если Вы не знаете, какое опирание будет у Вашей конструкции, то принимайте шарнирное бесконсольное. Самое худшее, что при этом может случиться, это запас конструкции по прочности в 1.5-2 раза

Тем же, кто надеется немного сэкономить на изготовлении конструкции, придется читать статью до конца. Ну а теперь о главном: почему в строительной механике и сопромате используются такие понятия, как шарнирные опоры и жесткое защемление на опорах и как с этим жить?

В большинстве случаев расчет строительной конструкции является упрощенным и приближенным, это позволяет выполнить расчет максимально быстро и просто. Например, нужно рассчитать перемычку из прокатного профиля, которая будет укладываться на раствор, используемый при возведении кирпичной стены. Чтобы выполнить расчет максимально точно, нужно кроме нагрузки, действующей на перемычку, также знать не только длину пролета, но и полную длину перемычки с учетом опорных частей, прочность кладочного раствора и прочность кирпича на сжатие, геометрическую форму кирпичей, силу сцепления металла с раствором и силу трения между металлом и раствором, возможные дефекты кладочного раствора, прокатного профиля, прямолинейность профиля, разность отметок опорных площадок и много чего еще. Однако строительная механика, если принять для перемычки шарнирное опирание без консолей, позволяет упростить расчет до минимума при использовании следующих допусков и расчетных предпосылок:

1. Перемычка рассматривается как однородное тело, обладающее изотропными свойствами, т.е. одинаковыми физико-механическими свойствами во всех направлениях. Это позволяет рассматривать перемычку как абсолютно плоский прямолинейный стержень лежащий на оси х . Ось х проходит через центр тяжести поперечных сечений стержня. Нагрузка приложена по оси у , т.е. попадает на ось х , проходящую через центры тяжести поперечных сечений.

2. Так как стержень абсолютно плоский, то опорные участки перемычки сводятся к двум опорным точкам А и В , при этом внутренние напряжения действующие на опорные участки по оси у сводятся к сосредоточенным нагрузкам, которые в данном случае представляют собой опорные реакции. Так как опорные площадки и опорные участки балки сведены к точкам, то и сосредоточенные опорные реакции прикладываются в опорных точках. Таким образом при расчетах используется не полная длина перемычки, а пролет балки l - расстояние между опорными точками.

3. Сила действия равна силе противодействия, например, общая нагрузка, действующая на перемычку равна сумме опорных реакций.

4. Сила сцепления металла с раствором и сила трения, возникающая при перемещении балки по оси х , принимаются достаточными для обеспечения неподвижности балки по этой оси в опорной точке А и не учитываются для опорной точки В . Другими словами в точке А балка смещаться по оси х не может, а в точке В может свободно.

5. Так как перемычка под действием нагрузки будет прогибаться, то на расчетной схеме нужно как-то обозначить расстояние между землей и перемычкой.

Наиболее полно данным расчетным предпосылкам отвечает следующая расчетная схема:

Рисунок 219.2 . Шарнирно опертая безконсольная балка.

Суть данной расчетной схемы следующая: наша перемычка представляет собой стержень, который шарнирно соединен с тремя условными опорными стержнями, имеющими бесконечно большую прочность, жесткость и длину, достаточную для того, чтобы обеспечить свободный прогиб балки и при этом смещение балки в точке В из-за изменения линейных размеров при прогибе будет происходить только по оси х . Сила трения в шарнирах равна 0, опорные стержни также шарнирно соединены с землей. При этом вертикальные стержни, обозначенные на рисунке 2 фиолетовым цветом, параллельны оси у , а горизонтальный стержень, обозначенный на рисунке 2 синим цветом, расположен на оси х , как и основная балка. Данное положение опорных стержней обеспечивает геометрически неизменяемую конструкцию. Это позволяет заменить опорные стержни тремя опорными реакциями и при расчетах обойтись тремя основными уравнениями равновесия, здесь мы никаких расчетов не производим, а потому и уравнения равновесия не приводятся (значения моментов, определенных, исходя из уравнений равновесия, даны на рисунке 219.1.а). В принципе при такой расчетной схеме расчет перемычки занимает не более получаса, причем больше всего времени уходит на сбор нагрузок. Изображаться шарнирные опоры могут по-другому, особенно для консольных балок, например так, как показано на рисунке 219.1.а), одна из опор при этом может обозначаться условно скользящей, но как бы шарнирные опоры не изображались физический смысл расчетной схемы для шарнирного закрепления на двух опорах остается неизменным.

Данную расчетную схему можно принимать для большинства строительных конструкций, имеющих две опоры и при этом относительно небольшую площадь опирания, например, при расчете деревянных, металлических и железобетонных балок перекрытия (если железобетонные балки будут изготавливаться отдельно от плиты перекрытия), для половых досок и железобетонных плит перекрытия, опирающихся на две стены, для перемычек. При этом влияние гвоздей, шурупов или раствора на работу конструкции можно не учитывать. Но

если длина опорных частей больше 1/3 длины пролета для перемычек или больше 1/8 части длины пролета для плит перекрытия в зданиях со стенами из тяжелых материалов, то имеет смысл проверить, нельзя ли рассматривать данную конструкцию, как защемленную на опорах.

С точки зрения строительной механики жесткое защемление на опорах, показанное на рисунке 219.1.б), можно заменить опорными стержнями следующим образом:


Рисунок 219.3. Замена защемления на опорах шарнирными опорами

Для того, чтобы защемление считалось жестким, значение l" должно быть значительно меньше l или стержень на участках АА" и ВВ" должен быть абсолютно жестким, при соблюдении одного из этих условий угол поворота поперечного сечения балки в точках А и В будет равен 0 или стремиться к 0. В реальности первое условие выполнимо, только если наша балка будет на опоре приварена (для металлических каркасов) или приварена и забетонирована (для железобетонных каркасов), причем не на глаз, а согласно расчету. Или нагрузка сверху и снизу на опорные участки балки l" будет значительно больше, чем нагрузка на балку, например при достаточном защемлении железобетонной плиты перекрытия между кирпичами стены. Но и этого мало. Такая балка, защемленная на двух опорах (рисунок 1.б) или имеющая 6 опорных стержней (рисунок 3), является трижды статически неопределимой балкой, со всеми вытекающими отсюда последствиями. В данном случае, как уже говорилось, расчетами мы не занимаемся, да и нет в этом необходимости, основные расчетные формулы приведены на рисунке 1.б, но использовать полученные знания уже можем.

Ну и главное отличие жестко защемленной опоры от шарнирной: угол поворота поперечного сечения балки (стержня) на жестко защемленной опоре всегда равен 0 вне зависимости от того, где и как приложена нагрузка, а на шарнирных опорах угол наклона поперечного сечения как правило максимальный. Это и дает в итоге столь ощутимую в конечном счете разницу значений прогибов.

Примеры влияния длины опорных участков

1. А теперь рассмотрим наиболее приближенный к реальности случай

Перемычка над проемом в кирпичной стене имеет опорные участки некоторой длины, к перемычке приложена равномерно распределенная нагрузка, проще говоря, на перемычку опирается кирпич. Такую перемычку можно условно рассматривать как двухконсольную балку на двух шарнирных опорах с равномерно распределенной нагрузкой. Требуется подобрать длину консолей так, чтобы изгибающий момент на опорах был равен максимальному моменту в пролете. Задача, не смотря на всю сложность формулировки, очень проста. Так как для безконсольной балки на двух шарнирных опорах максимальный изгибающий момент будет равен ql 2 /8 , то для консольной балки с таким же пролетом l нам необходимо подобрать такую длину l" , чтобы соблюдалось условие М max для пролета = М на опорах = ql 2 /16 . Почему так, здесь объяснять не буду, поверьте на слово (впрочем, по просьбам учащихся я написал отдельную статью об особенностях расчета косольных балок с симметрично загруженными консолями). Таким образом момент на опоре от распределенной нагрузки будет ql 2 /16 = ql " 2 /2 . Следовательно длина опорных участков перемычки должна составлять

l" = l /(√8 ) ≈ 0.3535l

Например для перемычки, укладываемой над пролетом длиной 2 метра, длина одного опорного участка должна составлять не менее 0.7 м, а суммарная длина опорных участков должна составлять не менее 1.4 м, чтобы перемычку можно было рассчитывать как двухконсольную балку на двух шарнирных опорах. И если для перемычки над двухметровым пролетом такая длина опорного участка - это много, то для перемычки над проемом в 1 метр длина опорных участков в 36 см уже не кажется такой большой по сравнению с минимально требуемой в 25 см и таким образом иногда можно подобрать такие размеры перемычки, которые позволят чуть ли не в 2 раза сэкономить на материалах. Тут есть свои особенности, которые при расчетах необходимо учитывать:

  • Увеличение длины опорных участков будет приводить к увеличению момента на опорах и балка будет приближаться с жестко защемленной на опорах;
  • Уменьшение длины опорных участков будет приводить к увеличению момента в пролете и балка будет приближаться к бесконсольной шарнирно опертой;
  • Нагрузка, принимаемая нами, как равномерно распределенная, на самом деле таковой не является, кроме того при сведении объемной нагрузки к плоской плоскость приложения такой нагрузки далеко не всегда будет совпадать с плоскостью, проходящей через центры тяжести сечений.

Учесть эти особенности можно поправочным коэффициентом, например, 1.2 или 1.3. Если мы умножим значение момента на поправочный коэффициент 1.5, то это уже получится жестко защемленная балка.

2. Еще один пример

Плита перекрытия опирается на кирпичную стену шириной 77 см (именно такая толщина стен часто требуется для обеспечения необходимой теплоизоляции современными строительными нормами, если стена дополнительно не будет утепляться), пролет плиты l l" = 0.6 м. Распределенная нагрузка на плиту перекрытия q 1 q 2 = 4000 кг/м.

Требуется проверить, можно ли рассматривать такую плиту как балку, жестко защемленную на опорах, или как консольную балку на шарнирных опорах.

Примечание : если длина опорного участка балки меньше высоты поперечного сечения балки, то нагрузка от веса стены из-за перераспределения напряжений не учитывается и балка рассматривается, как безконсольная на шарнирных опорах. В данном случае, если высота балки h находится в пределах 10-20 см, то длина опорного участка балки значительно больше высоты сечения и потому нагрузку от веса стены нужно учитывать, при этом нужно учитывать нагрузку от всей ширины стены, так как длина опорных участков сопоставима с толщиной стены. Момент на опорах будет равен

М опор = 4000·0.6 2 /2 = 720 кг·м,

M пролета = 500·4 2 /8 = 1000 кг·м,

таким образом максимальный момент в пролете плиты перекрытия составит 280 кг·м, это меньше чем 1000/3 = 333 кг·м и потому такую плиту перекрытия следует рассматривать как жестко защемленную на опорах.

Примечание : Даже в этом случае угол поворота поперечных сечений в начале опорных участков не будет равен нулю, так как и балка и материал стены имеют не бесконечно большую жесткость. Это означает, что для более точного расчета значение пролета жестко защемленной балки следует принимать больше фактического расстояния между стенами, на которые опирается балка. Более того, расчетное значение пролета может быть даже больше длины самой балки, особенно если модуль упругости балки значительно больше модуля упругости стенового материала.

3. Еще один пример

Плита перекрытия опирается на кирпичную стену шириной 51 см (именно такая толщина стен до сих пор часто делается), пролет плиты такой же l = 4 метра, длина опорных участков на плиту перекрытия l" = 0.38 м. Распределенная нагрузка на плиту перекрытия q 1 = 500 кг/м, распределенная нагрузка от веса кирпичной стены (в зависимости от марки и состава кирпича, высоты кладки и других причин) q 2 = 4000 кг/м. Требуется проверить, можно ли рассматривать такую плиту как балку, жестко защемленную на опорах, или как консольную балку на шарнирных опорах. Момент на опорах будет равен

M опор = 4000·0.38 2 /2 = 288.8 кг·м,

момент в пролете для безконсольной балки на шарнирных опорах

M пролета = 500·4 2 /8 = 1000 кг·м,

Таким образом максимальный момент в пролете плиты перекрытия составит 711.2 кг·м, это больше чем 333 кг·м и потому такую плиту перекрытия следует рассматривать как консольную балку с шарнирными опорами.

Примечание : если рассматривать такую плиту перекрытия как безконсольную балку на шарнирных опорах, то максимальный изгибающий момент, на который нужно рассчитывать поперечное сечение, будет на 40% больше. Однако как и в первом примере, все не так просто и для учета неучтенных обстоятельств желательно использовать поправочный коэффициент.

Конечно же опорные площадки, на которые будет опираться балка, нужно отдельно

Иметь представление о видах опор и возникающих реакциях в опорах.

Знать три формы уравнений равновесия и уметь их использо­вать для определения реакций в опорах балочных систем.

Уметь выполнять проверку правильности решения.

Виды нагрузок и разновидности опор

Виды нагрузок

По способу приложения нагрузки делятся на

· сосредоточенные и

· распределенные.

Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной.

Часто нагрузка распределена по значительной площадке или ли­нии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.

В задачах статики для абсолютно твердых тел распределен­ную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).

q - интенсивность на­грузки; I - длина стержня;

G = ql - равнодей­ствующая распределенной нагрузки.

Разновидности опор балочных систем (см. лекцию 1)

Балка - конструктивная деталь в виде прямого бруса, закреп­ленная на опорах и изгибаемая приложенными к ней силами.

Высота сечения балки незначительна по сравнению с длиной.

Жесткая заделка (защемление) (рис. 6.2)

Опора не допускает перемещений и поворотов. Заделку заменя­ют двумя составляющими силы Rax и и парой с моментом Mr.

Для определения этих неизвестных удобно использовать систему уравнений в виде

Каждое уравнение имеет одну неиз­вестную величину и решается без подста­новок.

Для контроля правильности решений используют дополни­тельное уравнение моментов относительно любой точки на балке, например

Шарнирно-подвижная опора (рис. 6.3)

Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.

Шарнирно-неподвижная опора (рис. 6.4)

Опора допускает поворот вокруг шарнира и может быть заме­нена двумя составляющими силы вдоль осей координат.

Балка на двух шарнирных опорах (рис. 6.5)




Не известны три силы, две из них - вертикальные, следовательно, удобнее для определения неизвестных использовать систему уравнений во второй форме:

Составляются уравнения моментов относительно точек крепле­ния балки. Поскольку момент силы, проходящей через точку креп­ления, равен 0, в уравнении останется одна неизвестная сила.


Для контроля правильности решения используется дополни­тельное уравнение

При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):

Примеры решения задач

Пример 1. Одноопорная (защемленная) балка нагружена со­средоточенными силами и парой сил (рис. 6.7). Определить реакции заделки.




Решение

2. В заделке может возникнуть реакция, представляемая двум: составляющими (R Ay ,R Ax ), и реактивный момент М A . Наносим на схему балки возможные направления реакций.

Замечание. Если направления выбраны неверно, при расчетах получим отрицательные значения реакций. В этом случае реакции на схеме следует направить в противоположную сторону, не повторяя расчета.

В силу малой высоты считают, что все точки балки находятся на одной прямой; все три неизвестные реакции приложены в одной точке. Для решения удобно использовать систему уравнений равновесия в первой форме. Каждое уравнение будет содержать одну неизвестную.

3. Используем систему уравнений:

Знаки полученных реакций (+), следовательно, направления ре­акций выбраны верно.

3. Для проверки правильности решения составляем уравнение моментов относительно точки В.

Подставляем значения полученных реакций:

Решение выполнено верно.

Пример 2. Двухопорная балка с шарнирными опорами А и В нагружена сосредоточенной силой F, распределенной нагрузкой с интенсивностью q и парой сил с моментом т (рис. 6.8а). Определить реакции опор.




Решение

1. Левая опора (точка А) - подвижный шарнир, здесь реакция направлена перпендикулярно опорной поверхности.

Правая опора (точка В) - неподвижный шарнир, здесь наносим две составляющие реакции вдоль осей координат. Ось Ох совмещаем с продольной осью балки.

2. Поскольку на схеме возникнут две неизвестные вертикальные реакции, использовать первую форму уравнений равновесия нецеле­сообразно.

3. Заменяем распределенную нагрузку сосредоточенной:

G = ql; G = 2*6 = 12 кН.

Сосредоточенную силу помещаем в середине пролета, далее за­дача решается с сосредоточенными силами (рис. 6.8, б).

4. Наносим возможные реакции в опорах (направление произвольное).

5. Для решения выбираем уравнение равновесия в виде

6. Составляем уравнения моментов относительно точек крепления:


Реакция отрицательная, следовательно, R А y нужно направить н противоположную сторону.

7. Используя уравнение проекций, получим:

R Bx - горизонтальная реакция в опоре В.

Реакция отрицательна, следовательно, на схеме ее направление будет противоположно выбранному.

8. Проверка правильности решения. Для этого используем чет­вертое уравнение равновесия

Подставим полученные значения реакций. Если условие выполнено, решение верно:

5,1 - 12 + 34,6 – 25 -0,7 = 0.

Пример 3. Опреде­лить опорные реакции балки, показанной на рис. 1.17, а .

Решение

Рассмотрим рав­новесие балки АВ. Отбросим опорное закрепление (задел­ку) и заменим его действие реакциями Н А, V A и т А (рис. 1.17, б ). Получили плоскую систему произвольно распо­ложенных сил.

Выбираем систему координат (рис. 1.17,6) и состав­ляем уравнения равновесия:

Составим проверочное уравнение

следовательно, реакции определены верно.

Пример 4. Для заданной балки (рис. 1.18, а ) определить опорные реакции.

Решение

Рассматриваем равновесие балки АВ. Отбра­сываем опорные закрепления и заменяем их действие реакциями (рис. 1.18,6). Получили плоскую систему про­извольно расположенных сил.


Выбираем систему координат (см. рис. 1.18,6) и со­ставляем уравнения равновесия:

q 1 ,

Расстояние от точки А q 1 (а + b);

Равнодействующая равномерно распреде­ленной нагрузки интенсивностью q 2 ;

Расстояние от точки А до линии действия равнодействующей q 2 (d - с).

Подставив числовые значения, получим

откуда V B = 28,8 кН;

- расстояние от точки В до линии действия равнодействующей q 1 (a+b);

- расстояние от точки В до линии действия равнодействующей q 2 (d - c).

откуда V A = 81,2 кН.

Составляем проверочное уравнение:

Пример 5. Для заданной стержневой системы (рис. 1.19, а ) определить усилия в стержнях.

Решение

Рассмотрим равновесие балки AB, к которой приложены как заданные, так и искомые силы.

На балку действуют равномерно распределенная на­грузка интенсивностью q, сила Р и сосредоточенный мо­мент т .

Освободим балку от связей и заменим их действие реакциями (рис. 1.19, б ). Получили плоскую систему про­извольно расположенных сил.

Выбираем систему координат (см. рис. 1.19, б ) и со­ставляем уравнения равновесия:

Где q (a + b) - равнодействующая

равномерно распреде­ленной нагрузки интенсивностью q (на чертеже она показана штриховой ли­нией).

Подставив числовые значения, получим:

откуда N AC = 16 кН;

Напомним, что сумма проекций сил, образующих пару, на любую ось равна нулю;

где N BD cos α N BD ", N BF cos β - вертикальная составляющая силы N BF (линии действия горизонтальных состав­ляющих сил N BD и N BF проходят через точку А и поэтому их моменты относи­тельно точки А равны нулю). Подставляя числовые значения и учитывая, что N BD = 1,41 N BF , получаем:

откуда N BF = 33,1 кН.

Тогда N BD = 1,41*33,1 = 46,7 кН.

Для определения усилий в стержнях не было исполь­зовано уравнение равновесия: ΣP to = 0. Если усилия в стержнях определены верно, то сумма проекций на ось v всех сил, действующих на балку, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, усилия в стержнях определены верно.

Пример 6. Для заданной плоской рамы (рис. 1.20, а ) определить опорные реакции


Решение

Освобождаем раму от связей и заменяем их действие реакциями N А, V A , V B (рис. 1.20, б ). Получили плоскую систему произвольно расположенных сил.


Выбираем систему координат (см. рис. 1.20, б ) и составляем уравнения равновесия:

где Р 2 cos α - вертикальная составляющая силы Р 2 ;

P 2 sin α - горизонтальная составляющая силы Р 2 ;

2qa - равнодействующая равномерно распределенной нагрузки интенсивностью q (показана штриховой линией);

откуда V B = 5,27qa;

откуда H A =7qa

линия действия силы Р 2 cosα проходит через точку В и поэтому ее момент относительно точки В равен нулю

откуда V A = 7qa.

Для определения реакций не было использовано урав­нение равновесия ΣP iv =0. Если реакции определены верно, то сумма проекций на ось v всех сил, действую­щих на раму, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, опорные реакции определены верно.

Напомним, что сумма проекций сил, составляющих пару с моментом т, на любую ось равна нулю.

Контрольные вопросы и задания

1. Замените распределенную нагрузку сосредоточенной и опре­делите расстояние от точки приложения равнодействующей до опо­ры А (рис. 6.9).

2. Рассчитайте величину суммарного момента сил системы от­носительно точки А (рис. 6.10).

3. Какую из форм уравнений равновесия целесообразно исполь­зовать при определении реакций в заделке?

4. Какую форму системы уравнений равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?


5. Определите реактивный момент в заделке одноопорной балки, изображенной на схеме (рис. 6.11).

6. Определите вертикальную реакцию в заделке для балки, представленной на рис. 6.11.

Пространственное твердое тело имеет шесть степеней свободы перемещений - три поступательных движения и три вращательных вокруг трех взаимно перпендикулярных осей. Плоское тело имеет только три степени свободы - два поступательных движения в направлении двух осей и вращение вокруг третьей оси. Опорные устройства препятствуют тем или иным из указанных перемещений тела или вообще исключают всякое его движение. Опорные устройства классифицируются по числу связей, накладываемых на перемещения опорных точек (узлов) тела. Связь обычно представляют в виде стержня, соединяющего тело с опорной поверхностью. Если нет специального указания, опорные связи и поверхности считаются абсолютно жесткими.

При нагружении тела на него со стороны опорных связей начинают действовать силы, называемые опорными реакциями. Опорные реакции находятся из уравнений равновесия тела, у которого опорные связи мысленно удалены и заменены силами, направленными вдоль снятых связей.

Для плоского тела, и в частности для плоского бруса, основными видами опор являются шарнирно-подвижная , шарнирно-неподвижная и защемляющая неподвижная .

Шарнирно-подвижная , или, иначе, катковая опора исключает перемещение опорного узла А в направлении, перпендикулярном опорной поверхности, но не препятствует вращению тела вокруг опорной точки и поступательному перемещению параллельно опорной поверхности. Такой опоре соответствует одна опорная реакция, направленная перпендикулярно опорной поверхности. Схематические изображения катковой опоры представлены на рис. 1.3. Там же показано направление опорной реакции.

Рис. 1.3. Шарнирно-подвижная опора

Шарнирно-неподвижная , или, короче, шарнирная опора исключает всякое поступательное движение опорного узла A , но не препятствует вращению тела вокруг опорной точки. Реакцию такой опоры, направление которой заранее неизвестно, принято раскладывать на две составляющие R x и R y , направленные по касательной и нормали к опорной поверхности, как показано на рис. 1.4. На этом же рисунке представлены схематические изображения шарнирных опор.

Рис. 1.4. Шарнирно-неподвижная опора

Защемляющая неподвижная опора , или, иначе, заделка (рис. 1.5) исключает поступательные и вращательные движения тела. В соответствии с тремя связями, накладываемыми на тело, реакциями заделки являются силы R x и R y и опорный момент M . Конструктивное оформление опорных устройств каждого из указанных типов отличается большим разнообразием. В приведенных на рис. 1.3, 1.4 и 1.5 общепринятых схематических изображениях опор подчеркиваются их самые характерные особенности.


Рис. 1.5. Неподвижная опора

  • 20. Область применения сварных конструкций
  • 21. Конструкции сварных соединений
  • 22. Расчет на прочность сварных соединений
  • 25. Расчет на прочность паянных соединений
  • 26. От чего зависит прочность клеевого соединения
  • 27. Клеммовые соединения. Конструкции и применение
  • 32. Критерии работоспособности шлицевых соединений. Почему они изнашиваются и как это учитывается при расчете
  • 33. Что такое механическая передача и необходимость ее применения
  • 35. Основные характеристики механических передач:
  • 38. Что такое коэффициент перекрытия зубчатой передачи
  • 39. Что такое контактные напряжения и как они определяются
  • 23. Соединение пайкой. Область применения
  • 28. Виды шпонок
  • 31. В чем преимущества шлицевого соединения по сравнению со шпоночным
  • 34. Классификация механических передач
  • 40. Расчет на прочность зубчатых передач
  • 42. Основной расчет ременной передачи
  • 44. Подшипники, их виды
  • 45. Подшипинки скольжения
  • 49. Проектный расчет вала
  • 50. В чем сущность расчета валов на усталость
  • 51. Как можно повысить сопротивление усталости валов
  • 53. В чем состоит задача расчета на прочность? на жесткость? на устойчивость?
  • 58. Как формулируется закон гука при растяжении? напишите формулы абсолютной и относительной продольных деформаций бруса?
  • 59. Какой случай плоского напряженного состяния называется чистым сдвигом? закон гука при сдвиге?
  • 60. Что такое полярный момент инерции и полярный момент сопротивления? связь между ними
  • 65. Как производится расчет скручиваемого бруса на прочность и жесткость?
  • 66. Какие типы опор применяются для закрепления балок и как направлены их реакции?
  • 67. Как производится расчет на почность при прямом изгибе
  • 71. Что такое система вала и система отверстия
  • 43. Фрикционные передачи
  • 46. Подшипники качения
  • 47. Расчет подшипников качения
  • 54. Какие внутренние усилия могут возникнуть в поперечных сечениях брусьев и какие виды деформаций с ними связаны?
  • 55. В чем сущность метода сечений
  • 61. Что такое осевой момент инерции и осевой момент сопротивления. Связь между ними
  • 62. Какой из двух осевых моментов инерции треугольника больше: относительно оси, проходящей….
  • 63. Что представляют собой эпюры крутящих моментов и как они строятся
  • 68. В каких случаях следует производить дополнительную проверку балок на прочность по наибольшим касательным напряжениям. Как производится эта проверка???
  • 69. Какая дифференциальная зависимость существует между интенсивностью нагрузки, поперечной силой и изгибающим моментом
  • Схематичное изображение подвижной шарнирной опоры дано на рис. 3.2, б.

    Подвижные опоры дают возможность балке беспрепятственно изменять свою длину при изменении температуры и тем самым устраняют возможность появления температурных напряжений.

    2. Неподвижная шарнирная опора (рис. 3.2, в). Такая опора допускает вращение конца балки, но устраняет поступательное перемещение ее в любом направлении. Возникающую в ней реакцию можно разложить на две составляющие - горизонтальную и вертикальную.

    3. Жесткая заделка, или защемление (рис. 3.2, г). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре может в общем случае возникать реакция, которую обычно раскладывают на две составляющие (вертикальную и горизонтальную) и момент защемления (реактивный момент).

    67. Как производится расчет на почность при прямом изгибе

    Условие прочности по нормальным напряжениям

    Где – наибольшее по модулю напряжение в поперечном сечении; – изгибающий момент; – осевой момент сопротивления; – допускаемые нормальные напряжения.

    Условие прочности по касательным напряжениям

    ,

    где – наибольшее по модулю напряжение в поперечном сечении; – допускаемые касательные напряжения.

    Если для материала балки заданы различные допускаемые нормальные напряжения при растяжении и сжатии, то условия прочности применяют отдельно к наиболее растянутым и к наиболее сжатым волокнам балки.

    71. Что такое система вала и система отверстия

    Стандартами допусков и по­садок в нашей промышленности установлены две возможные к применению совокупности посадок - система отверстия и система вала.

    Системой отверстия называется совокупность посадок, в которых предельные отклонения отверстий одинаковы (при одном и том же классе точности и одном и том же номинальном размере), а различные посадки достигаются путем изменения предельных отклонений валов (рис. 73, а). Во всех посадках системы отверстия нижнее предельное отклонение отверстия всегда равно нулю.


    Такое отверстие называется основным отверстием. Из рисунка видно, что при одном и том же номинальном размере (диаметре) и постоянном допуске основного отверстия могут быть получены разные посадки за счет изменения предельных размеров вала. В самом деле, вал 1 даже наибольшего предельного диаметра свободно войдет в наименьшее отверстие. Соединив вал 2 при наибольшем предельном его размере с наименьшим отверстием, мы получим зазор, равный нулю, но при других соотношениях диаметров отверстия и вала в этом сопряжении получается подвижная посадка. Посадки Балов 3 и 4 относятся к группе переходных, так как при одних значениях действительных размеров отверстий и валов 3 и 4 будет иметь место зазор, а при других натяг. Вал 5 при всех условиях войдет в отверстие с натягом, что всегда обеспечит неподвижную посадку.

    Основное отверстие в системе отверстия обозначается сокращенно буквой А в отличие от обозначения второй (не основной) детали, входящей в сопряжение, которая обозначается буквами соответствующей посадки.

    Системой вала называется совокупность посадок, в которых пре­ельные отклонения валов одинаковы (при одном и том же классе очности и одном и том же номинальном размере), а различные посадки достигаются путем изменения предельных отклонений отверстий. Во всех посадках системы вала верхнее предельное отклонение вала всегда равно нулю. Такой вал называется основным валом.

    Схематическое изображение системы вала дано на рис. 73, б,из которого видно, что при одном и том же номинальном размере (диаметре) и постоянном допуске основного вала могут быть получены различные посадки за счет изменения предельных размеров отверстия. Действительно, соединяя с данным валом отверстие 1, мы при всех условиях будем получать подвижную посадку. Подобную же посадку, но с возможным получением зазора, равного нулю, мы получим при сопряжении с данным валом отверстия 2. Соединения вала с отверстиями 3 и 4 относятся к группе переходных посадок, а с отверстием 5 - к неподвижной посадке.

    Основной вал в системе вала обозначается сокращенно буквой В.



  • Понравилась статья? Поделитесь с друзьями!